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Abstract

We consider the interaction of a nonlinear Schrddinger soliton with a spatially localized (point) defect in the medium
through which it travels. Using numerical simulations, we find parameter regimes under which the soliton may be reflected,
transmitted, or captured by the defect. We propose a mechanism of resonant energy transfer to a nonlinear standing wave
mode supported by the defect. Extending Forinash et al. [Phys. Rev. E 49 (1994) 3400], we then derive a finite-dimensional
model for the interaction of the soliton with the defect via a collective coordinates method. The resulting system is a three
degree-of-freedom Hamiltonian with an additional conserved quantity. We study this system both numerically and using
the tools of dynamical systems theory, and find that it exhibits a variety of interesting behaviors, largely determined by the
structures of stable and unstable manifolds of special classes of periodic orbits. We use this geometrical understanding to
interpret the simulations of the finite-dimensional model, compare them with the nonlinear Schrédinger simulations, and
comment on differences due to the finite-dimensional ansatz.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In a previous study, involving the first and last autH@is (Bragg) resonant nonlinear propagation of light through
optical waveguides with a periodically varying refractive index profile and localized defects was investigated. In that
work, an approach to the design of spatial defects in a periodic structure for the purpose of trapping and localizing
light pulses was suggested and explored. The technique involves resonant transfer of energy from traveling waves
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(gap solitons) taonlinearstanding wave modes localized at the defect. The cubic nonlinear Schrédinger (NLS)
equation with localized potentials, which we study in the present paper, provides a simpler model exhibiting similar
phenomena that is more amenable to analysis. In particular, in numerical simulations of NLS solitons incident on
a single delta-well (point) defect in a one-dimensional continuum, we find a variety of behaviors depending on the
parameters describing the soliton.

Several studies have examined the propagation of nonlinear waves through variable or random media. The
approach taken if3,4] is to view such a medium as sequence of individuabkscatterers, each modeled by a
repulsive delta function potential barrier. The interaction of a soliton with an individual scatterer is formulated
as a mapping of internal soliton parameters; a soliton which interacts weakly with a scatterer adjusts its internal
parameters slightly due to radiative loss of energy. The interaction with the full medium is approximated by repeated
composition of this simple mapping.

The problem we address is different in a number of respects. We cossileginteractions of a soliton incident
on asinglescatterer or defect potential. Furthermore, our potential is taken todttractivedelta function potential
well, which has a single localized eigenstate (defect mode). Therefore, an incident soliton can be expected to breal
up into a soliton with adjusted parameters, due to energy transfer to the localized defect mode and outgoing radiation
Components of the soliton’s energy may be reflected by the potential, transmitted through the potential, or captured
by its intrinsic modes. These strong nonlinear scattering interactions exhibit a great deal of complexity, which we
explore first by direct numerical simulation and then via finite-dimensional models.

In particular, we first conduct a series of numerical experiments on the partial differential equation (PDE), in
which a variety of phenomena are observed, which we may partly explain by a resonant transfer of energy to standing
wave modes localized at the defect. Second, we derive a finite-dimensional system of ordinary differential equations
(ODEs) that models the interaction of solitons with nonlinear standing wave ‘defect’ modes supported by the poten-
tial. This part of the analysis is similar in spirit to our earlier study of a finite-dimensional reduction of the simpler
case of kinks interacting with a trapped mode in the sine-Gordon equation with a poinf8gfaéter reviewing the
basic PDE model iSections 2 and,&nd describing the results of direct numerical simulatior&siction 4 we out-
line the (formal) finite-dimensional reduction procedur&ecttion 5We then describe iSection €a representative
set of three numerical experiments, in the same parameter ranges as the PDE studies, that reveal the kinds of solitc
transmission, reflection and transient capture behaviors that the ODEs eXbititn 7s devoted to analysis of the
ODEs. We describe invariant subspaces and special sets of orbits, focusing on the stable and unstable manifolds of ce
tain periodic orbits. These are shown to partially ‘organize’ the global dynamics, in particular providing separatrices
between transmitted and reflected soliton orbitSéetion § we make comparisons between the PDE and ODE dy-
namics and summarize. Detailed analytical calculations, and some background material, are relappttiia A

In addition to our specific study of NLS soliton—defect mode interactions, we believe that the detailed compar-
ison of PDE and ODE solutions in this paper has general implications for similar ‘collective coordinate’ finite-
dimensional representations commonly used to study dynamical interactions of continuous fields.

2. Thenonlinear Schrddinger equation with a point defect

We consider a nonlinear Schrddinger equation with a spatially localized ‘attractive’ impurity (a defect potential
well) at the origin:

iu,+%uxx+|u|2u+y8(x)u =0, y>0. (2.1)
In the absence of a defegt & 0), this system supports a two-parameter family of solitons of the form:
usol(x, 1) = nsectin(x — vt)) &=, 2.2)



R.H. Goodman et al./Physica D 192 (2004) 215-248 217

2

2
/

/

Energy [|ul|

T
-2 0

Frequency w

Fig. 1. The frequency and amplitude of a soliton in the absence of a defect (solid), and of the defect mode (dashed).

wherew = —(1/2)(n?—1?) is the temporal frequency. Solitons are nonlinear bound states which play a fundamental
role in the unperturbed/ (= 0) NLS equation, and we are especially interested in their behavior in the perturbed
system. Fory > 0, (2.2) does not solvég2.1), but far from the defect, the soliton propagates essentially without
distortion and at constant speedue to the exponentially small overlap of soliton and potential.

Eq. (2.1)also supportexactnonlinear bound state alefect modesolutions of the form:

upef(x, f) = aeiaz’/zsech<a|x| + tanh‘lZ> (2.3)
a

for all a > y. These solutions are constructed from a stationary (0) soliton on each side of the defect pasted
together atr = 0O to satisfy the conditions of continuity at= 0 and the appropriate jump condition in the first
derivative atx = 0, u(0") — u(0™) = —2yu(0). For both bound state familiesgo andupes, the frequency of
oscillation depends nonlinearly on its amplitude.

The chief concern of this paper is to understand strong interactions between solitons and the delta-well defect. If
the defect strengthis small or the soliton velocity is large, then the interaction is weak: a small amount of energy is
lost to radiation, and the soliton continues past the defect with minor changes to the parameters that define it. In the
case of weak interactions, estimates for the energy loss of the soliton can be obtained by the first order perturbation
theory (the Born approximatiori3,4]. Wheny is sufficiently large and is small, stronger interactions can take
place, the character of which may be understood in terms of a nonlinear resonance that in some cases takes place
between the soliton and the defect mode.

Solitons withv = 0 have||u50|||i2 = 2y and frequency-72/2, whereas nonlinear defect modes hHﬂ)l/@ef”%z =
2(a — y) and frequency-a?/2. InFig. 1, we plot the squarefi? norm of these two types of mode as functions of
frequency. In the following section we discuss thiurcation diagramof Fig. 1 and its implications, and review
the well-posedness theory of the initial value problem and the dynamic stability theargdi@andupes. Due to
the relation between the square of th&norm with the electromagnetic energy in the context of optics, we shall
refer to||“$0|||iz and||uDef||i2 as theenergyof the soliton and defect modes, and more generally to the square of
the L2 norm ofu over a region of space as the energy contained in that region.

Note that no defect modes exist in the frequency range(—y2/2, 0]. This observation is crucial in predicting
which solitons will be trapped and which reflected by the potential. We find, roughly, that sufficiently slow solitons
with n > y are trapped upon encountering the defect, while slow solitonsmwithy are reflected by the defect.

This suggests that trapping occurs via resonant energy transfer from the soliton to the defect mode. If the incoming
soliton has frequency less than/2/2, it can and may excite a nonlinear defect mode and transfer its energy to
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that mode. Otherwise, as [6], we find that the defect behaves as a scatterer, splitting the incoming wave into
transmitted, captured, and reflected parts. This behavior differs sharply from one seen in nonlinear optics: in the
nonlinear coupled mode equations describing the interaction of gap solitons with nonlinear defedhdtdeas

found that in the absence of resonance, pulses were either coherently reflected or transmitted after interacting witt
the defect, with little energy captured or lost to radiation.

3. Overview of well-posedness and stability
3.1. Structural properties of NLS

The nonlinear Schrédingequation (2.1)s a Hamiltonian system, which can be written in the form:
. 3
iy = au—*’H[u, u*l, (3.2)
whereH[u, u*] denotes the Hamiltonian:

1 1 1 1
Hlu, u*] = / (§|ux|2 ~ Shul® - ya(x)|u|2) dr — / (§|ux|2 - §|u|4) dr — ylu(0)>. (3.2)

Invariance with respect to time-translations implies tHéi, u*] is conserved by the flow df3.1). Additionally,
invariance under the transformation— €¢u, £ € R implies that

Mu, u*] =/|u|2dx= 2, (3.3)

is a conserved integral.
For the spatially translation-invariant case= 0, NLS has the Galilean invariance:

u(x, ) — ulx —ut, 1) ei(xv_(l/z)vzt), ve RL (3.4)
3.2. Well-posedness theory

The functionalsH[-] and V-] are well defined orif(RY), the space of functiong, for which f andd, f are
square integrable. It is therefore natural to construct the flow for initial data ofEfads fact, it can be shown that,
forinitial conditionsug = u(x, r = 0) € HY(RY), there exists a unique global solution of NiSe CO(RY; H1(R)),
in the sense of the equivalent integral equation:

t

u(®) =U(®uo +1i / Ut — s)|u(s)|%u(s) ds, (3.50)
0

U(t) = exp(—iHY), H=—38%— y8(x). (3.5h)

The spectral decomposition &f is known explicitly[7] and can be used to construétr) explicitly.

To show the existence of a solution(@5a)in H1, we must show the existence ot€4(RY; H1(R)) fixed point
of the mappingt(x, r) — J[u](x, 1), given by the right-hand side ¢8.5a)

We now outline the key ingredients of the proof. To boutid] and its first derivative inL2, we introduce the
operatorA = I + PcH, whereP; denotes the projection onto the continuous spectral pait.dfote thatA is a
nonnegative operator, since the continuous spectrufd f the nonnegative real half-line. Moreover, we expect
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TAY2 £l ~ 11 fllgr = 1 — 822 f | 2. In fact, we shall use that the following operators are bounded ft8io
L%

AY2(f — 85)‘1/2, A2 — a)%)1/2.
This follows from the boundedness of thave operatoren H! [8]. Therefore, we have an equivalence of norms:
Cull fllgr < A2 fll2 < Call fll 1. (3.7

Our formulation(3.5a)and introduction of4 is related to the nice property thdt and hence also functions gf,
commute with the propagator expiHt). We shall also use the Sobolev inequality:

|fCO12 < CIFl 2B £l 2 (3.8)
and the Leibniz rul¢g9]:
(I — 92)Y2(fg)ll < C(l fllzell(I — 832l 2 + 11T — 3D)Y2 f 12l gllL0). (3.9)

SinceU(r) is unitary inL?, we have
t
IAY2 0[]l 2 < 1AY 2uoll 2 + y /0 LAY [u(s)[2u(s)|l 2 ds
t
= | AY2ugll 2 + y / ICAY2(1 = 82)7Y2) - (1 — 92)Y?u(s)Pu(s)) || 12 Os. (3.10)
0

By (3.7)—(3.9):

I[u]Ol g2 < CIAJ[u]ll 2 < Calluoll g2 + C2T S[CL)JI;] ”u(s)”:;;l- (3.11)
s€[0,

Now assume that is such that suR rllu(s) g1 < 2C1. Then, by(3.11) by choosingl’ < T; sufficiently small,
SUR¢o, 71 I/ [ul ()1l g1 < 2Calluoll g1

I17Tu] (Ol 1 < Calluoll g2 + C2T(2C1|luo| 1)°. (3.12)

It follows that for 0< T < T3 sufficiently small, the transformatiaf{-] maps a balC%([0, T]; H1(R)) into itself.
A similar calculation shows that

1Tl @) — Tl g2 < KT(C1]luoll 1) sup [lu(s) — v(s)|l 2 (3.13)

5€[0,T]

and therefore for < T < T» < T, the transformatiod|[-] is a contraction on this ball. Therefor#,-] has a unique
fixed point inC9([0, T]; H1(R)) for T sufficiently small and local existence in time of the flow follows. Global
existence in time follows from the a priori bound on tHé norm of the solution implied by the time-invariance of
L? norm and Hamiltonian.

3.3. Nonlinear bound states

Bound states are an important class of solutions having the form:

up(x,f) = e Mo 1), ¢elL? (3.14)
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For the linear Schrédinger equation, the functigrare eigenstates of a Schrodinger operatc(tl/Z)af — Y8(x)
and satisfy the equation:

— 20— ¥8(X)p = Ap. (3.15)

Bound states are known to play a fundamental role in the general dynamics of the linear Schrodinger equation. This
is a consequence of the spectral decomposition of linear self-adjoint operators.
For NLS, such bound states satisfy the equation:

—Lo— () + l91P)p = Ao (3.16)

and have the general character of ‘nonlinear eigenstates’, although there is no rigorous decomposition theory of
solutions into such states, except in the completely integrable;cas® [10]. For this translation-invariant case

there is family of solitary traveling wave solutio(®.2). These are Galilean boosts of the basic solitary standing
wave(2.2)with v = 0; see(3.4). Fory > 0, the equation is no longer translation-invariant and we have the defect

or ‘pinned’ states of2.3). These two families of nonlinear bound states are plotted in bifurcation diagrim.df

We note that fory = 0 the family of solitons bifurcates from the zero state at zero frequency, the endpoint of the
continuous spectrum of the linearized operatc&f about the zero state. For> 0, the family of defect states
bifurcates from the zero state in the direction of the eigenfunction of the linearized operaﬁoﬁ y8(x), and at

the corresponding eigenfrequericy= —2/2; se€{11] for a general discussion.

3.4. Stability of nonlinear bound states

An alternative characterization of the nonlinear bound statgsandupes is variational. The advantage of the
variational characterization is that it can be used to establish nonlinear stability of the ‘ground stfit&; 8e

Theorem 1.

() The families of nonlinear bound state profiles> ¢sei(x; n) for the casey = 0 anda — ¢pes(x; a) for the
casey > 0 can be characterized variationally as minimizers of the Hamiltopgnsubject to fixed.? norm
N

min #[¢]. Mol = p. (3.17)

Thususe and upes are called ground states in their respective cases. Their associated frequen(gies=
—n?/2 andA(p) = —a?/2 arise as Lagrange multipliers for the constrained variational probi@i7) As
p — 0, A(p) — 0, respectivelyr(p) — —y?/2.

() Ground states aréf! nonlinearly orbitally Lyapunov stable, i.e. if the initial data afe! close to a soliton
(modulo the NLS symmetrjethen the solution remains close to a soliton in this sense faral{—oo, 00).

For results on asymptotic stability of nonlinear ground states] 1€l 7]

3.5. High energy defect modes and solitons

Solitons of the translation-invariant NLS equatiarg§ of (2.2) for y = 0) may be related to the high energy
(L2 norm) nonlinear bound statesef, in an appropriate limit. The following summary is based on the variational
principle of Theorem 1and does not require the explicit forma3)for the defect mode. This argument can also
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be applied to more general linear potenti&l(s)|u|2 in the Hamiltonian in place af(x)|«|?, and to more general
nonlinearities.

Consider the variational proble(8.17) in which we make explicit the dependence of the Hamiltoriaon the
defect strengtly by writing H(u; y) in place of the notation of3.2). DefineT,[u](x) = pu(px) for p > 0. Then,
(1/,03)H(Tp[u]; y) = H(u; y/p). If Z(p; y) denotes the minimum i(8.17) we therefore have

1
~T(p: y) = I(l; Z) .
o P

Note that, ap — oo, Z(1; y/p) formally approache%(1; 0), the constrained minimum of the cubic NLS Hamil-
tonian?# (u; 0), and that the extremizer is the classical one-soliton. It can be shown th&f{f; a) denotes the
nonlinear defect mode and we defifig by T1/,[upef] (x; a) = Up(x; a), thenUp (x; a) converges strongly to the
classical one-soliton of norm 1. It follows that, for large:pet (x, @) looks more and more like &,-scaled soliton
(a solitary standing wave) of the translation-invariant NLS.

4. Direct numerical simulations of the PDE

In this section, we discuss simulations of the initial value problem for the Biugation (2.1)All numerical
experiments in this section were performed using a modification of a finite difference approximation due to Fei
et al.[18], which conserves a discret@ norm and, in the absence of a defect, a discrete analog of the Hamiltonian.
The method is accurate to second order in both space and time, and is implicit only in its linear terms. Therefore,
it requires a linear equation to be solved at each step. The Dirac delta function is approximated either as a single
point discontinuity, or by a smoother function with very small support, with similar results in either case.

In the numerical experiments, a soliton is initialized far from the defect with prescribed velauity amplitude
n and is allowed to propagate toward the defect location. A wide variety of behaviors is seen as parameters are
varied. For simplicity (and motivated by a scaling argument giveBdntion 5 we limit our study to defects with
strengthy = 1. Therefore, the branch of nonlinear defect modes bifurcates at the frequéyizy The nonlinear
resonance summarizedhig. 1is useful in understanding the various behaviors that are possible in this interaction.

In the figures that followjx| is plotted although the systemis’ conservation might suggest plottifng2. This is
done to render visible the radiation that is shed during the interaction.

In the first set of runsy is set to 4, and is varied between 1 and 2. In this case, the solution remains mainly
soliton-like, with very little loss of energy to radiative modes. There exists a critical velocity, above which the soliton
is transmitted past the defect, although with diminished speed, and below which the soliton transfers its energy to
a nonlinear defect mod€ig. 2shows the input versus output velocities, indicating the critical velagity 1.78.

Fig. 3shows the evolution di«(x, )| up to a time somewhat after the interaction has taken place. In the left-hand
figure, the initial velocity was about= 1.65, and after some time the solution is a defect mode centeneg- 4t

with a small amount of radiation. In the right-hand figure, with initial velocity greater thathe soliton largely
survives, although some of the incoming soliton’s energy is captured by the defect and, as time proceeds, eventually
takes on the form of a small amplitude defect mode.

Wheny, is reduced to 2, the behavior changes. The simulations show a more complicated nonlinear scattering
process. The pulse splits into three parts: reflected, captured, and transmitted. In all cases, a significant defect mode
is created. The faster the soliton’s initial speed, the smaller the defect mode remaining in a neighborhood of the
origin and the larger the transmitted portion. An example is showrign4 and the phenomenon is summarized in
Fig. 5 which shows how the fraction of energy deposited into the defect mode decays monotonically as the input
velocity increases.
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Fig. 2. Input vs. output velocities of a soliton with n = 4.

When 7 isfurther decreased to 0.5, the behavior isaltered yet again. In this case, only asmall amount of energy is
captured by the defect, while large amounts are reflected and transmitted; see Fig. 6. When theincoming velocity is
sufficiently small, the soliton appearsto be compl etely reflected and when theincoming velocity issufficiently large,
the soliton is nearly completely transmitted. For intermediate velocities, the pulse is split into a transmitted and a

Fig. 3. The soliton amplitude |u| after interaction with the soliton, with large initial soliton amplitude n = 4. On the left, a Slower soliton is
captured. On theright, afaster soliton istransmitted, leaving behind a small defect mode. The transition from capture to transmission is abrupt,
occurring at acritical velocity ve ~ 1.78, as seen in Fig. 2.
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Fig. 4. A soliton with initial amplitude n = 2 has alarge amount of its energy captured by the defect. At left, aslower soliton with v = 1.5 has
asubstantial portion of its energy captured. At right, as the incoming soliton’s velocity isincreased to v = 1.75, less energy is captured and a
larger soliton gets through.
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Fig. 5. For n = 2, astheinput velocity is increased, the total amount of energy captured by the defect mode decreases.

reflected wave. This nonlinear scattering phenomenon is studied by Cao and Maomed [6], who derive approximate
reflection and transmission coefficients for the interaction in the case of small .

4.1. Discussion of simulations

We wish to interpret the scattering of solitons by defects in terms of the amplitude—frequency curves of Fig. 1.
In the previous section, as the soliton amplitude parameter n is decreased, two effects make the transfer of energy
from the soliton to the defect mode less efficient and enhance the scattering. At first, for n = 2, the amount of L2
energy lost in the interaction is increased, compared to the experiments with n = 4. Finaly, for n < y, there no
longer exists a nonlinear defect mode that resonates with the incoming soliton, and therefore almost no energy is
captured.

It was suggested in[2], in the context of the nonlinear coupled mode equations, that for sufficiently slow incident
solitons, a simple resonant energy transfer mechanism should hold. In particular, a good approximate predictor
of the distribution of trapped energy would be given by the vertical projection of the point corresponding to the
incident soliton onto the corresponding point on the defect mode curve with the same frequency. It turns out that this
approximationisvalidin certain cases, but extensive further simulations have shown the general situation to be more
complicated. In this subsection we explore this issue by means of the following auxiliary numerical experiment.
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Fig. 6. When n = 0.5, most of the waveisreflected with v = 0.25 (l€ft) or transmitted when v = 4 (right). When v = 1, the waveis split nearly
in half into reflected and transmitted portions.

Weinitialized afamily of solitonswith zero velocity and varying amplitudes n, centered directly over the defect,
and let them run forward until they formed standing wave states (recall that the defect standing wave (2.3) isan exact
solution of (2.1)). The solutions rapidly evolved into a combination of nonlinear defect modes and radiation. If the
above picture applied, then the defect modes thus produced should have almost the same frequencies as the initial
solitons. An example is shown in Fig. 7, which was initialized with n = 1 and y = 1. Fig. 8 reproduces the two
curvesof Fig. 1 with arrows connecting each soliton’ sinitial conditionsto the periodic solution of the corresponding
defect mode following theinteraction. The arrows are far from vertical, and show a consistent downward frequency
shift. Evidently, in this experiment the above ‘direct’ resonant exchange mechanism does not apply.

However, this finding does not contradict the role of resonant energy transfer in trapping an incoming soliton. In
the above experiment, in which the ‘incident’ soliton has velocity v = 0, the mechanism differs from that involving
amoving soliton. Were the nonlinear term absent, the results of thisauxiliary experiment would be well understood.
Spectral theory dictatesthat theinitia condition decomposesinto a bound state and radiative modes, and thereisno
rolein thisinteraction for the soliton’ sinternal frequency. In the presence of nonlinearity, the behavior is essentially
the same, although we can no longer compute the captured solution as the projection of the initial conditions onto
the bound state. The frequency is shifted because the solution is in some sense finding the nonlinear projection of
theinitial condition onto the family of nonlinear defect modes (2.3), which has only aslightly smaller L2 norm. As
a isincreased, the energy (L2 norm) isincreased and, as discussed at the end of Section 3, the ground state defect
mode approaches a scaled one-soliton centered at x = 0.
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Fig. 7. A soliton initialized over a defect quickly decomposes into a defect mode plus radiation.

By contrast, in the numerical simulations of moving solitons, the defect mode is initially forced by the tail at
the soliton’s leading edge, for which the soliton’s internal frequency is impaorfdm defect mode may grow by
resonantly extracting energy from the tail, before the bulk of the soliton even reaches the defect. Consequently,
when the soliton reaches the defect, the defect mode is large enough that the two modes may interact, and energy
may flow from one mode to the other. In the next section, we introduce an ordinary differential equation model of
thisinteraction.

5. A model of soliton—defect interactions

Forinash et al. [1] studied the interaction of a soliton with a linear defect mode using a collective coordi-
nate ansatz to derive a set of approximate equations to describe the evolution of a finite set of variables that
characterize the two modes. Their model yielded a complicated set of differential—algebraic equations which
was difficult to understand analytically. Here we modify and dightly simplify their ansatz. In particular, we
approximate the solution, u, as the sum of a time-modulated soliton and a time-modulated nonlinear defect
state:

u=us(x;n, Z,V,¢) +up(x;a, ¢, ¥), (5.1
where us is ageneralized soliton of the form:

us = nsech(nx — Z) V<=9 (5.2
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Fig. 8. Arrows connect soliton initial conditions to defect mode steady periodic solutions.

and up isageneralized bound state of the form:

up = asech (a|x| + tanh 71Z> Eaandh (5.3
a

In (5.2) and (5.3), the variables n, Z, V, ¢, a, and v are all allowed to depend on ¢. Note that ||us,||i2 = 2nand
||uD||i2 = 2(a — y). The Lagrangian functional of the NLS equation is evaluated at u (by integrating over the
spatial domain), and the resulting function is then interpreted as an effective finite-dimensional Lagrangian whose
Euler—L agrange equations determine the evol ution of these variables. Instead of seeking stationary configurations of
the (true) Lagrangian with respect to admissible variations of the field variable u (x, ¢), we consider only variations
of the type allowed by the time-dependent variables of the ansatz. This technique, often known as the collective
coordinate or variational method, has along history and is well summarized in arecent survey by Maomed [19].
The NLS Lagrangian (cf. (3.2)) is

< * 1 2 1 4 2
L= —(uuy —uly) — Zlluxll® + S lul™ + y8(x) |u|“ dx.
o 2 2 2

We evaluate thisintegral for our ansatz (5.1)—(5.3). Unlike [1] and most other analyses of thistype of which we are
aware, we do notassume that a is small, and we include high-order termsinvolving a. We do make the ssimplifying
assumption that all interaction between the modes us and up takes place through termsinvolving the deltafunction.
Thisis, in part, justified because the other interaction terms involve oscillatory integrals which will average out to
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be much smaller than the terms retained.! The resulting effective Lagrangian is given by
Leff = 2n¢p — 2ZV + 2(a — ) (¢ + V) + %n?’ V%4 %a3 + yn?sech?Z + 2yny/a? — y2sechZ cos .
(5.9

This Lagrangian has an associated Hamiltonian, conserved by the Euler—Lagrange (and Hamilton’s) equations:

H= —:—13773 + V2 — %a3 — yn?sech®Z — 2ymy/a? — y2sechZ cosv. (5.5)
Since the Hamiltonian is independent of ¢, its conjugate momentum:
L ef
Pe= Sy = 2n+2(a—vy) (5.6)

is conserved by Noether’stheorem [20]. Notice that py = || us||i2 + |lup ||i2. This conservation law isthe analogue
of the L? conservation law for NLS (3.3). The phase space of this three degree-of-freedom system can therefore be
expressed as the cross product of the reduced four-dimensional (Z, V, a, v)-phase space and the two-dimensional
(n, ¢)-phase space, withtrivial dynamicsonthelatter, determined from thereduced systemvia(5.6) and aquadrature
(cf. (5.9) and (5.10)). In the analysis that follows, we may therefore regard the constant of motion:

c=n®+alt) =y (6.7

asaparameter determined by theinitial conditions, and study evolution on thereduced (Z, V, v, a)-space. Here and
henceforth ¢ denotes this constant, and should not be confused with its conventional usage to denote the speed of
light.

Wenotefurther that the resulting equationsareinvariant under therescalinga + ya, ¢ — yc, t — t/y%:implying
that, without loss of generality, the parameter  may be set to equal to 1. This symmetry belongs only to the reduced
system of ODEs, not to the original NLS equation (2.1), but motivates our decision to perform simulations only
with y = 1. Then ¢ is the only parameter remaining in the evolution equations, and these equations are in fact
canonically Hamiltonian for the ‘scaled’ Hamiltonian H/2, with H of (5.5) written in the Lagrangian coordinates:

H=—-1+ (c —a)(ca+ V% — (c — a)sech? Z) — 2(c — a)v/a? — 1sechZ cosy. (5.8)
Thefinal reduced equations, to be studied in Section 7, are now:

Z=(c—a)V, (5.9a)

V = —(c — a)2sech?Ztanh Z — (c — a)v/a? — 1sechZ tanh Z cos, (5.9b)

V= cZ—ZC—Za—VZ + (¢ — a)sech?Z + %sechz cosy, (5.90)

i = —(c —a)a? — 1sechZ siny, (5.9d)
with ¢ evolving according to

¢ =—3((c —a)? = V?) — (c — a)sech’Z — /a2 — 1sechZ cosy. (5.10)

Before analyzing these ODES, we describe numerical experiments that reveal interesting interactions between the
soliton and the defect mode, and suggest specific questions.

1 Here we are essentially anticipating that this effective Lagrangian is a normal form to which the ‘exact’ one is equivalent up to change of
variables. The assumption that the integrals are oscillatory is violated when |V| « 1, i.e. when the soliton is stalled. The assumption that the
overlap integral is small will be violated when | Z| « 1, i.e. when the soliton is close to the defect.
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6. ODE simulations of theinitial value problem

We now describe a set of numerical experiments for the ODE (5.9) anal ogous to those discussed in Section 4 for
the PDE. We initialize a soliton at Z(0) = —Zg with |Zp| > 1, set equal to 20 for these simulations. The velocity
parameter is set to V(0) = Vi, propagating rightward toward the defect. For subsequent comparison with the PDE
simulations, we note that the variable V in (5.9) isrelated to the soliton velocity v of (2.2) viav = nV by (5.7) and
(5.98). The soliton amplitude is set to n(0) = no, and we assume there is no energy initially in the defect mode,
so0 a(0) = y = 1. Thus the relation (5.7) fixes the constant ¢. (Because of the singularity of Eq. (5.9c), we set
a(0) = 1+ ¢, wheree <« 1; values between ¢ = 108 and ¢ = 10~° were used in these computations. For some of
the effects seen, ¢ needs to be set to the small end of this range to get stable results, due to the singularity in (5.9¢).)
Finaly, we set ¥(0) = 0. Note that, for large | Z|, the y» dependence becomes exponentially weak, so we do not
expect strong y-dependent effects.

We choose a representative set of 1(0), or equivaently, ¢ values. For each fixed n(0) we alow Vj, to vary over
a range of values, and numerically integrate (5.9) until the soliton center, Z(r), reaches the defect (Z(r) ~ 0)
(eventually) exits the defect region, and reaches Z = +Zg or Z = —Zp a, say t = T. By avariant of the Poincaré
recurrence theorem, asin [5], we can show that the soliton must eventually escape any bounded set containing the
defect; cf. Section 7.1. We then plot the soliton’s outgoing velocity parameter Vo (related to the physical velocity
by (5.93)), and the amplitude (a(7) — 1) of the defect mode as functions of Vi,. For Zg sufficiently large and ¢
sufficiently small, theinitial value of the phase difference v was indeed found to be unimportant in determining the
values of V(T) and (a(T) — 1). In interpreting these results, it is important to realize that the dynamics takes place
in four-dimensional phase space, and that the figures merely show projections of trajectories on lower-dimensional
subspaces.

6.1. Experiment 1: large

We observe several distinct types of behavior. The behavior for n = 4 isshown in Fig. 9. In this case, we find
a sharp change in behavior at a critical velocity parameter V; ~ 0.55. Above this velocity, solitons pass through
the defect without significant interaction, merely decreasing their velocities and transferring a little energy to the
defect mode. Below V¢, however, the soliton interacts with the defect, oscillating within the defect region afinite
and apparently random number of times before being gjected either to the right or the left. It is also striking that
the amount of energy remaining in the defect mode seems to be restricted to two levels: either a — 1 ~ 3 or
a — 1 « 1. This behavior is apparently governed by the structure of the invariant manifolds of degenerate fixed
pointsat | Z| = oo. Sincethere exist solutionsto (5.9) with Z bounded, aswell as solutions which approach Z = oo
with V > 0, these must be separated by solutions for which Z — oo while V. — 0. Along with the apparently
arbitrarily fine structure of transmission and reflection zones, Fig. 9 further shows wide reflection windows of the
type reported in many previous studies, e.g. [21-24)].

In Section 7.1, we will investigate the stable and unstable manifolds that are responsible for this behavior, but we
give abrief preview here. Fig. 10 showsthe (Z, V) projections of trajectories with nearby initial velocities on either
sideof V¢ (V(0) = V. £ 0.002). The solid curve comes close to an orbit apparently asymptoticto (Z, V) = (oo, 0),
and then turnsback and istransiently captured before eventual reflection, whilethe dashed curve approachesinfinity
with V bounded above zero, and is transmitted without further interaction. This‘separatrix’ behavior isrepeated in
the multiple transmission and reflection windowsfor V < V¢ (Fig. 9) and is reminiscent of that found in our earlier
study of an ODE model of kink—defect interaction in the sine-Gordon equation [5], and shown there to be related
to the homaoclinic tangle formed by transverse intersection of stable and unstable manifolds of periodic orbits at
|Z| = oo: compare Fig. 9 with Figure 3.2 of [5].
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Fig. 9. (Top) Outgoing velocity vs. incoming velocity of solitons incident on defect via ODE simulation with n = 4. (Bottom) Amplitudea — 1
of nonlinear defect mode after passing of the soliton.

The ODES' behavior should be compared with the direct numerical simulations of solitonswith n = 4, asshown
in Fig. 2. The critical velocity is overestimated by 24% (vc = nV. = 2.21 cf. 1.78 for the PDE), and the PDE
simulations show no evidence of the fine structure of transmission and reflection zones below vc. This difference,
partially due to neglect of radiation damping in the ODES, is discussed in Section 8.
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Fig. 10. (Z, V) phase space plots of captured and transmitted trajectories just above (dashed) and below (solid) critical velocity.
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Fig. 11. (Top) Outgoing velocity parameter V vs. incoming V of solitonsincident on defect viaODE simulation with n = 2. (Bottom) Amplitude
a — 1 of nonlinear defect mode after passing of the soliton.

6.2. Experiment 2: medium

In Fig. 11, computed for n = 2, we see a quite different picture. Here and in the first numerical experiment
above, —n2/2 < —y2/2 = —1/2 and resonant interactions can and do take place (cf. Fig. 1). In thiscasethereisno
transition between transmission and refl ection: the soliton travel smonotonically rightward and isalwaystransmitted
without transient capture or oscillations about the defect. More strikingly, the output velocity appearsto approach a
finitelimit Vot &~ 1.17 as Vi, — 0, while the amount of energy captured approachesa — 1 ~ 1.26 (all the soliton’s
energy would be captured if a — 1 = 2). Asthe initial velocity increases, so does the output velocity, while the
energy transferred from the soliton to the defect mode decreases. This is not surprising, since the duration of the
interaction decreases with increasing soliton speed.

6.3. Experiment 3: smal}

For Fig. 12, weset = 0.5 < y; inthiscasethe soliton is reflected if Vi, liesbelow acritical velocity Ve &~ 0.51
and transmitted if Vi, > V.. We also see that the defect mode has afinal amplitude of order 10~23, absorbing little of
the soliton’ s energy. We notethat —y2/2 = —1/2 < —n?/2 corresponds to the region in Fig. 1 in which the soliton
has no resonant defect mode ‘partner’ with the same temporal frequency, and hence that appreciable interactions
areunlikely [2].
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Fig. 12. (Top) Outgoing velocity vs. incoming velocity of solitonsincident on the defect viaODE simulation with n = 1/2. (Bottom) Amplitude

a — 1 of nonlinear defect mode after passing of the soliton; note vertical scaleis O(10~3).

Fig. 13 shows evidence that the solution passes near Z = V = 0, presumably approaching and leaving the
neighborhood of a hyperbolic invariant set on this subspace. In Section 7, we shall show that this subspace indeed
contains afixed point of saddle—center type surrounded by afamily of periodic orbits whose stable manifolds serve
as separatrices. In Fig. 13, we also show projections onto (Z, V)-space of the numerically determined stable and
unstable manifolds of the fixed point, along with two trajectories. one with asymptotic velocity larger than the

0.5

Fig. 13. Phase space projections of trajectories above (solid) and below V. (dashed), showing strong evidence for a saddle point. Projections of

stable and unstable manifolds of the saddle on Py are shown as dotted curves.
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limiting value on the unstable manifold, which is transmitted, and one with asymptotic velocity smaller than the
limiting velocity, which is reflected.

7. Analysisof ordinary differential equations

The numerical experiments described above reveal two broad types of behavior. For small values of 1, the soliton
traveling near the critical velocity appearsto approach ahyperbolic fixed point or periodic orbit on (Z, V) = (0, 0);
see Fig. 13. For larger values of 7, it oscillates about (Z, V) = (0, 0) asif around an dlliptic fixed point, and also
follows orbits asymptotic to (Z, V) = (fo00, 0) before turning; see Fig. 10. To interpret these observations we now
analyze the ODE system (5.9), seeking a (partial) understanding of its global phase space structure.

We first note that the setsa = ¢ and ¢ = 1 are invariant for the flow (although the vector field is singular on
the latter), and bound the physically admissible region. When a = 1, all the energy resides in the soliton; when
a = c, it dl resides in the defect mode. Letting Z = [1, ¢] denote the closed interval, the phase space of Eq. (5.9)
iS(Z,V, ¥, a) € R? x §1 x Z. We aso note the following (reversibility) symmetry group under which (5.9) is
equivariant:

Z,V,¢,a,t) > (—=Z,V, 27—y, a, —t), (7.19)
(Z,V,Y¥,a,t) —> (Z,—V,2mr — ¢, a, —1). (7.1b)

We shall use this below.

There is a family of solutions at Z = =+oco with V, 4, and v constant, which correspond to the uncoupled
propagation and oscillation of the two modes when the soliton is infinitely far from the defect. The subset of these
solutionswith V = 0 form a degenerate family of periodic orbits ‘at infinity’, parameterized by a = a, and filling
the annulus (or finite cylinder):

Poo ={(,a)|V =0, |Z] = oo} (7.2)

We note that by (5.7) and (5.9¢), ¥ = (n? — a2,)/2 on Pw, S0 that the frequency of these orbitsis nonzero provided
aso 7 1 Or, equivalently, as # c¢/2. Asin [5] we may employ atransformation of theform g = sechZ, p = V to
bring these orbits to the origin in (p, ¢)-space, and then apply McGehee' s stable manifold theorem [25] to prove
the existence of invariant manifolds for the fixed point (p, ¢) = (0, 0) in an appropriate (local) Poincaré map. This
shows that each periodic orbit in P., has two-dimensional stable and unstable manifolds, so that WS(P.,)—the
stable manifold of P, itself—is three-dimensional and hence locally separates the four-dimensional phase space.
Indeed, W3(P,) separatesorbitsthat escapeto infinity (transmitted solitons) from those that are reflected to interact
with the defect mode again.

Studying the anal ogous sine-Gordon kink-trapping problemin [5], we used i soenergetic reduction and Melnikov’ s
method [26,27] to prove that the stable and unstable manifolds of each periodic orbit, restricted to their common
energy manifold, intersect transversely, and hence that Smal e horseshoes exist [27]. We then appeal ed to phase space
transport theory [28,29] to unravel the structure of sets of initial datathat are transiently captured before eventually
being transmitted or reflected. We proceed in the same manner in Section 7.1, although we have to introduce an
artificial small parameter, and the set of solutionsto which the standard reduction procedure appliesislimited, since
it requires that the frequency v not change sign (in the process one replaces time by /), and this holds only for
large ¢, depending on g; cf. Eq. (5.9¢). In particular, it does nothold for many physically relevant parameter val ues,
including those corresponding to initial data with (almost) all the energy in the soliton (a ~ 1). Nonetheless, the
analysis does provide some understanding of the large n simulations of Section 6.1.
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There are further invariant manifolds that play an important rélein the fate of solutions. They belong to orbits on
asecond annulus:

Po={W,a)|V=0,Z=0} (7.3)

that isalso invariant under the flow, and on which the ODEs are integrable. Solutions on Pg correspond to a soliton
stalled over the defect and periodically exchanging energy with the defect mode. The orbit structure on PP depends
upon ¢ and may be derived from the level sets of the Hamiltonian function H restricted to Po:

Hp,(Y, a) = —%63 +(c—a) (ca— (c—a) —2vVa? — lCOSI/f) . (7.9

As noted above, the boundariesa = ¢ and a = 1 of Py are invariant, and the flow is singular on the latter, which
contains two degenerate saddle pointsat v = /2, 3n/2. Thereisauniquefixed point (i, *) on ¢ = 7 surrounded
by periodic orbits which limit on heteroclinic orbit(s). As shown in Appendix A.1, for al c¢(> 1), (w, a*) is a
saddle—center, with positive and negative real eigenvalues whose eigenvectors point out of Pg. For ¢ < 2.214. ..
thisisthe only equilibrium; for ¢ > 2.214. .. two further fixed points, a center—center and a saddle—center, appear
on yr = 0; restricted to Py these are a center and a saddle, whose separatrices interact with the stable and unstable
manifolds of the degenerate saddlesona = 1inaheteroclinic bifurcation[27] at ¢ &~ 3.21 asc continuesto increase.
Ho takes its minimum value —c3/3 on ¢ = a, its maximum at (7, a*), and the value —¢3/3 + ¢ — 1ona = 1 and
the invariant manifolds emanating from it. Fig. 14 shows these distinct cases. In this figure, we also show the level
set with Hamiltonian value equal to that of a ‘pure’ soliton stalled at infinity: H(|Z| = oo,V = 0,a = 1, ¢) =
—c3/3+ ¢(c — 1). Since any incoming soliton with nonzero speed has H > —c2/3+ ¢(c — 1) (see (5.8)), this curve
bounds the set of accessiblerbits on Py: adisk centered on (7, a*).

7.1. Stable and unstable manifolds/ef,

We first observe that we may define alocal three-dimensional cross section [27] for the flow of (5.9):
EJT - {(Z7 ‘/91//5 a)|ae (a*,C),lpIJT}. (75)

We verify that the flow istransverseto X, in Appendix A.2.
Since the Hamiltonian (5.8) is time-independent, its value is conserved by solutions of (5.9), which are therefore
constrained to lie on three-dimensional surfaces:

H(Z, {,a; c) = h = const.

determined by the initial data. The variables p and 1, defined below, denote coordinates which are conjugate to
coordinates V and . As shown in Appendix A.3, this permits a further reduction in dimension. Specifically, since
the cross section X, intersects level sets of H transversely, X, with a = const may be used as a two-dimensional
cross section for the flow restricted to constant H surfaces. It ison this‘reduced’ cross section that we will portray
the stable and unstable manifolds WSY(Py).

To approximate these manifolds we first add an artificial coupling parameter 1 to the Hamiltonian of Eq. (5.8):

H= -3+ (c —a)(ca+ V? — (c — a)ysech?®Z) — u2(c — a)v/a? — 1sechZ cosy. (7.6)

For the case at hand, 1 = 1, but we shall assume u <« 1 and perform a perturbative analysis, subsequently
appealing to continuation to extend to u = 1. The variables V and y are canonical ‘positions’ for this Hamiltonian
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Fig. 14. Level sets of Hp in the invariant plane Pp for: (@) ¢ = 5(n = 4); (b) ¢ = 3(n = 2) and (¢) ¢ = 1.5(n = 0.5). The dashed curve
indicates the boundary of the orbits accessible from infinity, as described in the text.

with conjugate ‘momenta’ p = —2Z and I = 2(a — y) = 2(a — 1), and I and  are action-angle variables for the
‘second’ degree-of-freedom. In these canonical variables, the Hamiltonian (7.6) assumes the form:

H = Ho(V, p; ) + nH1(p; L ). (7.7)

The formal discussion of the Melnikov integral will refer to these canonical variables, although in both the compu-
tationsto follow, and in numerical simulations, it ismore convenient to work with the original variables (Z, V, ¥, a).
For u = 0, the ‘unperturbed’ Hamiltonian Hy is independent of v, and the ODES reduce to

Z=(c—a)V, (7.89)
V = —(c — a)®sech?Z tanh Z, (7.8b)

b= 2 —2ca—V?
- 2

a=0. (7.8d)

+ (¢ — a)sech?Z, (7.80)
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The position and velocity Z and V evolve as a particle in a potential well, with the strength of the well dependent
on a = ag, which is unchanging. The solution set comprises bounded periodic orbits, and unbounded orbits where
|Z] — oo with finite speed. In between is a separatrix, on which Z = sinh ‘1;73/21‘, where ng = ¢ — ag isthe
amplitude of the soliton. In the unperturbed dynamics, the angular displacement, determined by integration of
(7.8c) along the separatrix, is given by

2 2
—a 1
¢=¢0+M+—arctanng/2. (7.9

2 2./m0

The separatrices are homoclinic orbitsto aperiodic orbit S(r) € P Witha = ag and (Z, V) = (£o0, 0). Note that
unlike in [5] and related problemsin celestial mechanics (e.g. [30]), in this case the generalized ‘ position’ (soliton
speed, V) goes to zero and the conjugate ‘ momentum’ (soliton position, Z) goes to infinity.

We ask if any members of this continuum of homoclinic orbits persist when u # 0. Now if WY(8) crosses the
p = 0axisatthepoint (p =0, V, ¢ = 0, a, t = 0), then, by the symmetries (7.1), W5(8) must also pass through
this point. To establish existence of a (perturbed) homoclinic orbit it therefore suffices to show that either WS(8)
or WY(B) intersects p = 0. However, to demonstrate transverse intersections requires a more delicate calculation,
appealing to perturbation theory for small 1« and a result due to Melnikov, the derivation of which is outlined in
Appendix A.3. Specifically, we have the following theorem.

Theorem 2. Leth > 0 and 20(f) = dHo/dl. Let{Ho, H1/$20} denote the Poisson brackeaf Ho(V°, p% and

HYVO, pO 40, 19)/20(VO°, p°) evaluated along/%(r) and p°(r). Define the Melnikov function
oo Hy 0,0 ;0
M®o) = Ho, 2 (V. p~, ¢, I)(n) dt (7.10)

—0o0

and assume thal/ (o) has a simple zero an@q(f) # 0. Then foru > 0 sufficiently smallthe Hamiltonian system
has transverse homoclinic orbits on the energy surféce h°.

We note that the usual reduction process and Melnikov integral are meaningful only aslong as v is monotonic with
respect to 1(y = £2 # 0), so that the global cross section 2y referred to in Appendix A may be defined. However,
Holmes [31] has extended this analysis to the case where v is allowed to change sign in a bounded region in the
‘middle’ of the unperturbed homoclinic orbit, but under the condition that v+ be monotonic sufficiently close to the
periodic orbit 8. Direct substitution of the unperturbed orbit Z = sinh ‘177(3)/ %t into Eq. (7.8c) yields

1 no
0=5 (’70 0 1+778f2> (7.11)

By our ansatz ng > 0, and so the condition that §2g not change sign throughout is
(1 <)ap < moorag > 4/ % + no;

however, if we appeal to [31], we need only exclude a neighborhood of the degenerate set
aop = 1o

to ensure that £2g9 # 0 near B.

2

(FGl=r - ————
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We now sketch the computati on needed to verify theremaining hypothesisof Theorem 2. Since H; isV-independent,
the Poisson bracket reduces to

{ H, } 1 0Hp0H1 Hi <3HQ 020 0Hp 3.{20)
V.p)

Hp, — —_—
20 vV ap ap 9V

S 200V p 25
After computing partial derivatives (cf. (7.8)) and substitution of the unperturbed separatrix solution in the Hamil-

tonian of (7.6), some manipulations, and appeal to odd- and evenness properties, the Melnikov integral may be
written as

o [ (= —ad)g®) + nog 1)) SnO®) _
M) = 5 — 1 </—oo i ((ng — a)g2(1) + no)? dt) snvo. (r12)

where
2 2

—a 1
g =,/1+n32 and O() = ’702 °t+2ﬁactmng/2t.

Thisintegral cannot, in general, be computed explicitly, unless , /g isrational. However, since the integrand is an
analytic function of r with no essential singularities, it can have only isolated zeros. Therefore, except for special
vaues of (no, ag), M (o) has only simple zeros where 19 = nr, and Theorem 2 implies that, for small values of
1, there exist transverse homoclinic orbits to infinity.

Fig. 15 shows numerical computations of the stable and unstable manifolds of periodic orbits in P, for two
values of u in the same energy surface H = —20.69, corresponding to the energy of the system with a soliton
withn =4and V = 0.4 starting at |Z| = oo, witha = 0. They areillustrated as curves lying in the cross section
X .a=0 introduced at the beginning of this section. (Since each periodic orbit 8 in P, isaone-dimensional circle,
WS(B) and WY (B) are each two-dimensional, and so intersect suitable cross sections to the flow in one-dimensional
curves.) The transverse intersections are clear from the figure. As described in [5], phase space transport theory
[28,29] may be used to analyze the capture, transmission and reflection dynamicsimplied by transversal homoclinic
points such as those of Fig. 15. Here we provide a brief review; for a more complete explanation, see [5].

Weconsider WY(Z = —o0), theunstablemanifold of Z = —o0, and WS(Z = o0), thestable manifold of Z = oo,
which intersect transversely in a point gg in the top center of the figure. (Both cases show such an intersection,
although the phenomenon is clearer in Fig. 15(b).) The union of the point go, the portion of W!(Z = —o0) to the
left of go, and the portion of W3(Z = oo) to theright of go form aboundary between the upper and middle regions
of the plane. A similar boundary existsin the lower half plane. Stretching off to the left from the point g isa series
of lobeslying in the upper region, each of which istheimage under the map P, of thelobeto itsleft. Between each
such pair of lobesin the upper region, and below WY(Z = —o0), liesalobein the middle region. Counting both sets
of lobes, the image of any given lobe under P, isthe second lobetoitsright. In particular, the image of the nearest
upper region lobe to the left of gg is alobe located in the middleregion. Similarly, the image of the middle region
lobeimmediately to the left of gg liesin the upper region. This nearest upper lobe and the neighboring middle lobe
form aturnstile through which phase space points are transported from the upper to the middle region, and from
the middle to the upper region. A similar turnstile in the lower half plane transports phase space between the lower
and middle regions.

Trapping takes place when an initial condition that lies in the sequence of lobes in the upper-left quadrant is
mapped from the upper region to the middie region. Reflection or transmission occurs because eventualy, as the
interior lobes are successively stretched and folded, the image of this point will, with probability 1, liein aturnstile
exit lobe (area preservation of the symplectic map P, guarantees that no open set contained in a preimage of an
incoming turnstile lobe can betrapped for all futuretime [5, Proposition 1]). If the point’ simage exitsinto the upper
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Fig. 15. Stable and unstable manifolds of periodic orbits 8 € Pw,, shown via the Poincaré map defined on the cross section X;: (a) u = 0.25;
(b) © = 0.5, corresponding to the energy level for = 4and V = 0.4.

region, it istransmitted. If it goes into the lower region, it is reflected. This may be seen as an analogy with phase
space transport in atwo-bend horseshoe map, asis shown in [5]. Theiterated preimages of the turnstile lobes form
afractal structure that is responsible for the multiple reflection and transmission windows of Fig. 9.

7.2. Stability of orbits orPg

To determine the stable and unstable manifolds of 7Py we must first determine the stability types of orbits within
it to perturbations out of Pgy. By continuity, the periodic orbits immediately surrounding the saddle center (r, a*)
are aso of saddle type with respect to such perturbations, but the stability types of other periodic orbits must be
determined via Floquet theory [32].
On Py the ODEs reduce to
c? 2a° —ac—1

sz—ca+(c—a)+ =

Cos v, (7.139)
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a=—(c—a)va®—1lsny. (7.13b)

Typical phase portraits of (7.13) are shown in Fig. 14.
Consider the solution S* to the initial value problem of a soliton starting from | Z| = oo with finite velocity Vo
and zero energy in the defect mode, i.e. « = 1 and ¢ = 5 + 1.3 §* is confined to the level set

H=-13+ -1+ V) EH, (7.14)

of the conserved Hamiltonian and hence, if it approaches Pg, can only interact with orbits having the same H value.
In particular, since the maximum H value for orbits on Py is assumed by the fixed point (7, a*), thereis a critical
velocity VI above which the solutions S* have more ‘energy’ than any orbits contained in Py, and thus must
remain bounded away from it. Similarly, the minimal value H = —c3/3 + ¢(c — 1) of orbits S*, assumed when
Voo = 0, bounds the set of accessible orbits on Py, as shown by the dashed curvein Fig. 14.

Consequently, for each Vo, € [0, V1), we find a periodic orbit Sy € Po with the same Hamiltonian value
H = hp as §* and determine its stability by examining the linearization of the full system (5.9) about So =
(0, 0, ¥rp(2), ap(t)). The stability of such an orbit is given by the eigenvalues of the monodromy matrix: the fun-
damental solution matrix of the linearized differential equation, evaluated at one period of oscillation. Let Sp =
(Z, V., &) solvethislinearized ODE, which is block-diagonal, with the (Z, V) components decoupling from the
(¥, &) components. The eigenspace of the latter coincides with Py and hence belongs only to eigenvalues of unit
modulus, as one expects from the integrable structure of Fig. 14 (in fact . = 1 with multiplicity two and asingle
eigenvector).

Perturbations perpendicular to P satisfy

d- . d - .
g 2= (c—ar®)V, gV = (- ap()? + (¢ — ap()Vap()? — Lcosyp(1)) Z. (7.15)

Since this may be written in the form:

3 (0)= (o ") ()
de \ V) \ 4210 0 V)

the Floquet theory for Hill’s equation is applicable [32]. The product of the Floquet eigenvalues must be 1, and
their sum is given by the Flogquet discriminant. If this is greater than 2 in absolute value, the periodic orbit is
hyperbalic, i.e. unstable; if less than 2, the orbit is elliptic, i.e. neutrally stable, transverse to Py. We approximate
these discriminants by first numerically integrating the orbit (ap(¢), ¥p(¢)) for one period, and then computing the
fundamental solution matrix for the linearized system (7.15), using interpolated data for the coefficients.

Since each periodic orbit in Py corresponds, via its Hamiltonian level, to a velocity Vi at |Z| = oo, we plot
in Fig. 16 the Floquet discriminants as functions of V4, for the three examples of Section 6.3. In the first case
(n = 4), there are two regions each of stability and instability, and the velocity range shown in Fig. 9 corresponds
to periodic orbits of elliptic type, consistent with the intuition from Fig. 10, that solutions oscillate about Pgy. The
critical velocity dividing capture and transmission, identified in Fig. 9 isindicated by an asterisk. The second case
of n = 2 encompasses arange of stability and one of instability, and in the third (and simplest) case, withn = 1/2,
al orbitsare unstable and hyperbolic. It isnotable that V' = 0.51 in this case, approximately equal to the critical
velocity for transmission and reflection seenin Fig. 12 (but see the detailed analysisin Section 7.3, below).

Someinteresting implications canimmediately be drawn from the stability typesof orbitsin Pg implicitin Fig. 16.
Recall that these periodic orbits correspond to astate in which a soliton, stalled over the defect at Z = 0, exchanges
energy periodically with the defect mode. Hence, if soliton and defect parameters are chosen consistent with astable

3 Practically, asin Section 6, the orbit is started at some | Zg| > 1witha =1+ ¢, ¢ < 1.
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region (e.g., below Vo, ~ 0.9incasen = 2and for Vo, < 1and Vi € (1.4, 1.8) in case n = 4), and the soliton
isinitialized at the defect or somehow introduced into it, perhaps by temporarily destabilizing the relevant orbit, it
will remain trapped under small perturbations. Such stable trapped states do not exist for smaller ».

Inthe case n = 0.5, the initia condition S = (—oo, Ve = 0.501, 1, yrg) lies on the same Hamiltonian surface
asthe fixed point (;, a*). The stable and unstable manifolds of this fixed point are only one-dimensional and thus
cannot separate reflected from transmitted orbits. However, the stable and unstable manifolds of (the accessible
disk on) Pg are three-dimensional, and are consequently able to divide the phase space into disioint regions. We
must therefore compute the stable and unstable manifolds of the accessible periodic orbits on Py as well as of the
saddle—center (7, a*).

7.3. Stable and unstable manifoldsfeyf

Appealing to the symmetries of (7.1) and the fact that the orbits of interest are reflection-symmetric about
Y = m, we need only compute one of the four branches of WS(Sp) for each of the saddle type periodic orbits
So € Po. To do thiswe first compute each periodic orbit Sp starting at apoint (a, ¥) = (ag, ) whereag > a*, the
saddle—center. We interpol ate these with 64 equally spaced points (with respect to time). At each of these 64 points
(ao, ¥o), the fundamental solution matrix is computed as in Section 7.2. Fourier interpolation is used to compute
the coefficients (ap, Yrp) at intermediate times, so the orbit Sp need only be computed once. At each point on the
periodic orbit, we compute the unstable eigenvector of the monodromy matrix, vg = (Zg, Vo). We normalizeit so
that |vg| = 10~° and solve the full system (5.9) of ODE’swith initia conditions (Zg, Vo, ao, ¥o), stopping when
|Z| = 20.

Let WS(Po) = Up, WS(Sp) denote the set of stable manifolds of the accessible hyperbolic orbitsin Pg. W3(Po)
isthree-dimensional, and is locally (near | Z| = 0) foliated by two-dimensional cylinders, each of which isalocal
stable manifold of some Sy. We therefore expect WS(Po) to intersect the three-dimensional cross sections of initial
data X+ = {(V, ¥, a)|Z = +Zo, | Zo| > 1} in two-dimensional sets, which should in turn separate sets of initial
data giving rise to solutions that pass the defect from those reflected by it.

Fig. 17 shows the results of computations for the third of the three cases of Section 6: n = 0.5, and for afurther
case, with dlightly larger n = 0.75. Note that the sets ¥ ~ R x ST x 7 are periodic in y. As might be expected
from the experiment of Section 6.3, near a = 1 the surface WS(Sp) N X_ is a graph over the (¥, a) annulus: all
orbits starting at points below it are reflected, and points starting above it are transmitted. Further from a = 1 the
surface devel ops folds; these become more pronounced for higher n(c), asin the lower panel of Fig. 17. The surface
describesthe critical velocity asafunction of phase v and amplitude a — 1 of the defect mode. Note the weak phase
dependence, particularly asa — 1, and that the surface approachesa = 1 at V ~ 0.51 in the case n = 0.5 (upper
panel); thisis the critical velocity found in Section 6.3. Initial data on this surface corresponds to trapping (recall
that the accessible orbitsin Py correspond to solitons pinned at the defect).

Ininterpreting thisfigureit ishelpful to note the following facts. Individual two-dimensional components W3(Sp)
of WS(Pp) intersect sectionsat Z = +Zg for small | Zp| in homotopically trivial (contractible) circles, but as| Z| (and
the time of flight) increases, particular solutions belonging to WS(Sp) can pass arbitrarily close to the degenerate
saddlesona = 1 a ¢ = n/2, 3n/2 (cf. Fig. 14 (bottom)). This effectively separates neighboring solutions and
stretches their phase (v/) angles over arange exceeding 2. The result is that the corresponding sets WS(Sp) N X_
extend around the S component in a homotopically nontrivial manner. Only those components of WS(Pg) very
closeto W3(r, a*) remain contractible; these can be seenin Fig. 17 near v = m,a = 1.

The‘outer’ (lower V, higher a) boundary of the computed portion of WS(Sp) N X_ islimited by numerical issues:
it isimpossibleto compute with uniform accuracy as vel ocities approach zero, since thetime of flight growswithout
bound; however, it appears that velocities do decrease to zero as a increases. For example, numerical experiments






242 R.H. Goodman et al./Physica D 192 (2004) 215-248

like those of Section 6.3 indicate that all orbits launched with positive vel ocities, no matter how small, anda > 1.1,
are transmitted. The surface thereforeintersects V = 0.

We have been unableto reliably computeinvariant manifol ds of Pg for the medium and large n cases. Preliminary
studies suggest that, as c increases, the set WS(Pg) N X ‘separates’ from the planea = 1, so that nearby initial data
all lie in the transmission zone (cf. Fig. 11, which indicates that al solitons are transmitted for n = 2, regardless
of their initial velocities). However, as ¢ continues to increase, the stable manifold WS(P,) evidently invades X,
leading to the complex behavior of Fig. 9. In particular, the increased folding of WS(Pg) N X_ asn (or ¢) increases
evident in Fig. 17 is consistent with the existence of a fine (fractal) structure suggested by Fig. 9. Since W3(Py.)
cannot intersect WS(Pg), weconjecturethat, as W3(P ) invades X', it must ‘ align’ withthelatter (folded) manifold,
producing (infinitely) many regions of transmission and reflection on any vertical linein X'_ abovethe (a, ¥)-plane.

8. Interpretation and summary

In this paper, we have derived a finite-dimensional model for soliton—defect mode interactions in a nonlinear
Schrédinger equation with a point defect. Following [1], and alowing for afully nonlinear defect mode, which by
itself is an exact solution, we derive a three degree-of-freedom Hamiltonian system that describes the evolution
of amplitudes and phases of the soliton and defect mode, and the position and velocity of the former. Allowing
a nonlinear defect mode is important, since it permits resonant energy transfer to occur over a range of soliton
amplitudes. However, only these two modes are represented; in particular, radiation to the continuum is ignored,
and multiple solitons are disallowed.

The resulting ODESs may be further reduced to two degrees of freedom, since in addition to the Hamiltonian, a
second quantity, corresponding to the total energy in the two modes, is also conserved. While this system is rather
complex, and indeed is nonintegrable in certain parameter ranges (cf. Section 7.1), it possesses two-dimensional
invariant subspaces filled with periodic orbits, whose stable and unstable manifolds partially determine the global
structure of solutions. Weusethissystem to investigate therefl ection, transmission, and trapping of solitonslaunched
‘from infinity’, by the defect, concentrating on the case in which the energy initially all resides in the soliton.
Numerical simulations and analyses of the model PDE’ sreveal three basic types of behavior:

(1) Forlargeinitial solitonintensities, thereisacritical velocity abovewhich all solitonsaretransmitted; bel ow this,
a complex structure of reflection and transmission bands exists, separated by trapping regions that apparently
are of measure zero. The capture and eventual transmission or reflection is explained by phase space transport
viaturnstile lobes formed from parts of the stable and unstable manifolds of orbits ‘at infinity’, corresponding
to uncoupled oscillations of the defect mode and a distant soliton.

(2) For moderateinitial soliton intensities, al solitons are split into atransmitted part and a captured defect mode.
The transmitted part travels to the right monotonically, giving up a fraction of its energy to the defect mode.
The amount of energy transferred to the defect mode is a decreasing function of incident velocity.

(3) Forsmallinitial solitonintensities, reflection or transmission occursfor amost all initial velocities. Specifically,
aunique critical velocity existsfor each initial phase and defect amplitude below a certain level; this represents
initial data on the stable manifold of a subset of periodic orbits, each of which correspondsto the soliton stalled
over the defect, periodically exchanging energy with the defect mode. This can be explained by the stable and
unstable manifold of the manifold Pg, which divide the phase space into two regions.

We now compare thisto the behavior of the numerically computed solutions to the original PDE:

(1) For largeinitial soliton intensities, there also exists a critical velocity separating solitons which are captured
from those which pass by the defect with little interaction. The ODE prediction of v¢ = nV; = 2.21 (with
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n = 4) isin error by some 24% compared to the PDE simulations, v = 1.78, and unlike solutions to the
ODE, captured PDE solitons do not eventually escape. The reduced ODE system isHamiltonian, and thus, by a
variant of the Poincaré recurrence theorem, any solution for which Z isunbounded ast — —oo must aso have
unbounded Z at alater time, with probability 1. In the full PDE, however, radiative damping plays arole; there
areradiative modes which carry energy away from the defect mode. These radiation modes are not incorporated
in our ansatz; asin other problems (cf. [5,33]), their inclusion is expected to yield a collective coordinate ODE
reduction with corrections which can play the role of damping. This damping corresponds to energy transfer
from the soliton—defect mode subsystem to the radiative ‘ heat bath’. While the finite-dimensional Hamiltonian
ODE reduction leads to trapping for a set of data of measure zero, for the reduction perturbed by damping, a
set of data of positive measure is trapped.

The ODE model displays two behaviors for solitons below the critical velocity. Fig. 9 reveals the existence
of reflection windows: initial velocities for which the soliton returns to minus infinity with the same intensity
and the opposite velocity it started with. Between these resonance windows are chaotic regions, where the
soliton may oscillate near the defect any number of times before being gected, with apparently random veloc-
ity. Reflection windows are a common feature of ODE models of this type [21,23] as well as in some PDEs
describing soliton—defect and soliton—soliton interactions [22,24]. However, the fractal structure of the reflec-
tion/transmission windows is seen only in the ODE models and not in the PDEs. Radiative damping becomes
important when the soliton stays in the neighborhood, and eliminates the chaotic behavior. It is shown in [5]
that the chaotic behavior can be eliminated by the inclusion of appropriate radiation termsin the ODE ansatz,
which leads to damping in the ODE.

In numerical simulations of NLS soliton—defect interactions, no reflection windows have ever been found
via PDE simulations. It appears from our simulations, and from a form of post-processing of the simulations
to be described momentarily, that energy may be transferred from the soliton to the defect mode, but not
vice versa, so that once a defect mode is created, it never gives up its energy to the soliton. In the numerical
post-processing, we cal culatethe six ODE parametersof (5.4) by minimizing the distance between the numerical
PDE solution and the ODE ansatz defined by (5.2) and (5.3). Thisanalysis shows that for captured solutions, »
decreases to zero as a grows, so that the soliton is destroyed as the defect mode is created. Thisisin contrast
with the sine-Gordon simulations of [23] in which reflection windows are seen. The difference liesin the fact
that the two interacting modes in the sine-Gordon experiments are ‘topologically’ distinct. In that case the
soliton is a kink, which approaches two different limits asx — oo, while the defect mode is exponentially
localized. The kink is defined solely by position and vel ocity, and has no amplitude parameter equivalent to 7.
When the kink transfers energy to the defect mode, it is not destroyed, since it still must satisfy the boundary
conditions at +oc0. This topological constraint forces it to persist, so that energy stored in the defect mode
may be (re-)converted to kinetic energy that pushes the kink away. In the NLS, in contrast, there is no such
topological barrier, since the soliton decays to zero at both extremities. It can therefore transfer al its energy
to the defect mode and cease to exist. No soliton-like structure need persist to absorb energy from the defect
mode.

Thispointstoacriterionwehave not seen mentioned when eval uating the eff ectiveness of collectivecoordinate

ansatzes. If two modes included in an ansatz can become ‘far from orthogonal’ in some parameter regime, in
that they may be highly correlated or may be used to represent the same information, then collective coordinate
methods may give misleading results for solutions that approach these parameter regimes.
For intermediate intensities, and specifically n = 2, the long time behavior consists of a captured defect mode
and a transmitted soliton. The faster the soliton’s initial approach, the less energy is captured by the defect
mode. Comparing Fig. 5 with the lower graph of Fig. 11, we see this ‘ capture efficiency’ phenomenon in both
cases. In neither case does acritical velocity separate captured from transmitted solitons.
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Fig. 18. Reconstruction of the spatial structure of solutions from the two-mode ansatz (5.2) and (5.3), compared with full PDE solutions, for
orbits reflected and transmitted in the case of n = 0.5.
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For small intensities, the soliton is split into three parts: reflected, transmitted, and captured components. A
prediction is made in [6] about the amount of energy in each of these three modes, although no comparison is
made in numerics. Since the ansatz (5.2) and (5.3) permits only two modes, it cannot possibly capture al of
this behavior. A three-mode ansatz, including two solitons and a defect mode, was constructed, but not found
to be useful in studying this system. Nonetheless at very small (resp. large) initial velocities, the soliton is
almost entirely reflected (resp. transmitted), so the two-mode ansatz is reasonable. In these cases, the initial
condition lies squarely to one side or the other of the stable manifold illustrated in Fig. 17, and the ODE and
PDE simulations compare reasonably well. At intermediate velocities, the solution reaches a state shown in
Fig. 18, which is areconstruction of the ansatz solution from the ODE parameters. In this figure, the solution
appears as a soliton cleaved in two by a defect mode. In the full PDE, the two halves of the soliton component
would separate and proceed in opposite directions. In the ODE reduction, they are unable to do that: the ansatz
(5.2) and (5.3) constrains recombination into a single soliton.

These comments illustrate what we believe to be rather general issues relevant to understanding the successes and
failures of finite-dimensional or collective coordinate ODE reductionsin reproducing PDE dynamics. Of course any
correspondence between the solutions to a PDE and its variational ODE approximation depends on the assumption
that the PDE solution remains close to the ansatz used in the approximation. This may or may not happen, and it
is risky to draw quantitative information from the ODE model, for example regarding how solutions of the PDE
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depend on a certain parameter that is varied. Indeed, many such studies amount to numerically solving both the
ODE and PDE, and noticing that the behavior is similar.

A more nuanced approach that is advocated in this paper and others, is that the ODE can be used to illuminate a
mechanism that underlies a behavior seen in numerical simulations of the PDE. For example, we have seen that the
existence of acritical velocity in the PDE can be explained by finding separatrices in the reduced ODE dynamics.

We may even takethisastep further. An eventual goal of thisresearchisto understand the behavior of gap solitons
interacting with defectsin Bragg gratings[2]. The derivation of avariational ODE for that system is complicated by
thefact that gap solitons possessinternal modes, which would require additional degreesof freedomin any collective
coordinate ansatz, as in [34]. Nonetheless, NLCME gap solitons interacting with defects share many qualitative
behaviors with the ODEs (5.9) derived in this study. We may draw a bifurcation diagram much like Fig. 1 for this
PDE. Further, low amplitude gap solitons are either coherently transmitted or reflected, whereas high amplitude
gap solitons are captured when sufficiently slow, and pass by the defect if they have enough kinetic energy. Both of
these behaviors were seen in the numerical experiments of Section 6. We may postul ate that mechanisms similar to
those seen in Section 7 are responsible for the “resonance” between solitons and defects described in [2].

Note added in proof

The authors have recently learned of the recent publication of Sakaguchi and Tamura[37], which makes clever and
effective use of a collective coordinate model to study problems similar to those covered in the present article. We
would also like to draw attention to the recent work of Goodman and Haberman [38], which provides a detailed
understanding of the mechanisms of capture and resonant reflection in the related problem of sine-Gordon kinks
interacting with defects.
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Appendix A. Detailed calculations

A.l. Fixed points oPg

We verify the claim that the fixed points (v, a) = (7, a*) on Py are saddle centers. The center behavior within Pg
follows from the structure of the restricted Hamiltonian (7.4), and behavior transverse to Py is determined by the
linearization given in (7.15), evaluated at (r, a*). The resulting (constant) matrix has zero trace and determinant:

D =(c—a)2(c—a*) - V@2 - D% —a"2D@"), (A1)
50, provided D(a*) < 0, theremaining eigenvalues A = ++/—D arereal, implying hyperbolic saddle type behavior
inthe (Z, V) directions. Note that D(a*) < 0 iff
241

* = . A.2
a’ > ac e (A2
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From (7.13) the fixed point value a* is given by solution of
242 — ca— Lgef
——————— =R(a). A3

Va1 #3

Now L(a) is monotonically decreasing and R(a) is monotonically increasing (intherangea € (1, ¢)), so if wecan
show that L(ac) > R(ac), it followsthat a* > ac and hence that D(a*) < 0, as required. But

2
L(a)dg% +c—(c+ Da=

2—c—-1
Liag) = —5 —

and so the claim is true.

1
and R(ac) = ——
c

A.2. The cross sectioh,;

Toverifythat X, = {(Z, V, ¥, a)|a € (a*, ¢), ¥ = 7} isacrosssection for the flow it sufficesto show that i # 0
on X;. From (5.9c) we have
c2—2ca V? 24> —ca—1

lb|1//=71 = 2 - 7 + (C - a)%ChZZ — T%Chz

2 2
_2
:—V? + (1 - sechz) [C ca

—(c— a)SeChZ}

(2a2 —ca-1 [cz — 2ca

=1 > +(c—a):|>seChZ

2 —2ca

<(1-sechZ) [ —(c— a)sechzz} —[R(a) — L(a)]sechZz, (A.4)
where R(a) and L(a) are defined in (A.3). Now sechZ < 1 for |Z| < oo, so the sign of the leading term in (A.4)
is determined by the expression in square brackets. The second term of this is always negativefor 1 < a < ¢ and
the first is also negative for a > a*, sincea® > ac > ¢/2, as shown above. Finally, since R(a) is monotonically
increasing and L (a) monotonically decreasing and a > a*, the point at which R(a*) = L(a*), thelast termisalso
strictly negative. We conclude that i < 0 on X, as required.

A.3. Reduction and the Melnikov function

We summarize the modified reduction procedure and Melnikov calculation developed by Holmes and Marsden
[35] for two degree-of-freedom Hamiltonian systemsin the form (7.7), in which the frequency of the action-angle
mode depends upon the phase variables in the other degree-of-freedom. (The procedure is also outlined in [36],
where it is applied to Kirchhoff’s equations for equilibria of an elastic rod.) Asin Melnikov’s ‘standard’ method
[26,27], transverse intersections of stable and unstable manifolds of a perturbed system are found by examining the
zeros of an integral computed along the homoclinic orbit of the unperturbed system.

Consider the perturbed two degree-of-freedom system with Hamiltonian:

H = Ho(V, p; D) + nH1(V, p; I, ) = h (= const.) (A.5)

and let

0H, dHp
=—=—+0 = £2 O(w). A.6
31 TR () o+ O(w) (A.6)
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Then, provided £2 > 0, Eqg. (A.5) may be inverted and solved for I in terms of V, p, ¥ and the constant . As
shown in [35], we may therefore eliminate I and replace time by the conjugate variable ¢ and write the reduced
three-dimensional system on the constant energy surface as a periodically forced single degree-of-freedom system
with Hamiltonian —I(V, p, ¢; L, k), and evolution equations:

ol
V=——, = —, A.

o P=gy (A7)
where (-) denotes d/dy(-). This implies conservation of three-dimensiona phase space volume on the constant
energy manifolds, and area preservation in the two-dimensional Poincaré maps defined below. Moreover, in[35] it

is shown that the reduced Hamiltonian 7 of (A.7) may be written
I=To(V, p; L, ) + pTa(V, p, s L, h) + O(u?), (A.8)

where Z; is 2r-periodic in . Thus, reduction yields the standard form of a periodically perturbed single degree-of
freedom system for application of Melnikov’ smethod [26,27]. Infact, inserting the series (A.8) into the Hamiltonian
(7.7), wefind

To = Ho(V, p)~1(h), (A.9)
7, = plo¥) (A.10)
£20(V, p, Io)

When 1 = 0, the reduced Hamiltonian system (A.7) has a phase portrait which coincides with that of the full
system, since the vector field is given by

al ol 1 (0H 0H)\
(-5 av) = @ (v
it thereforea so hasahomaclinic orbit. When . > 0, thesystem (A.7) isnonautonomous, and thuswe may no longer
draw aphase portrait, but we may instead construct the Poincaré map on the cross section Xy, = {(V, p, ¥ = ¥0)}
[27]. By atheorem of McGehee [25] the periodic orbit at infinity, 8, and its stable and unstable manifolds WS(B)
and WY(B) persist for small values of w.

To prove transverse intersection of WS(8) and WY(8), we apply the Melnikov method to the Poincaré map
Py Xyy — Xy, that results from following the flow from v = g to = g + 27. As noted at the beginning
of Section 7, and treated in greater detail for the analogous sine-Gordon problem in [5], aresult of McGehee [25]
allows us to apply the Melnikov method even though the fixed point at infinity is not hyperbolic. The Melnikov
integral can be interpreted as a normalized distance between the stable and unstable manifolds at a specified point
on the cross section X. Asin [36], we may then apply a version of the usual Melnikov method [26,27] to the
reduced system (A.7). Thiswould lead to a Poisson bracket involving Zp and Z; in the Melnikov integrand, but, via
Egs. (A.9) and (A.10), thisis equivalent to the ' p — V'’ Poisson bracket of the original functions Hp and Hi. This
yields Theorem 2 as stated in Section 7.1.
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