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Summary. We consider the nonlinear propagation of light in an optical fiber waveguide
as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is
assumed to have anindex of refraction that varies periodically along its length. The wave-
length of lightis selected to be in resonance with the periodic structure (Bragg resonance).
The AMLE system considered incorporates the effects of noninstantaneous response of
the medium to the electromagnetic field (chromatic or material dispersion), the periodic
structure (photonic band dispersion), and nonlinearity. We present a detailed discussion
of the role of these effects individually and in concert. We derive the nonlinear coupled
mode equations (NLCME) that govern the envelope of the coupled backward and forward
components of the electromagnetic field. We prove the validity of the NLCME descrip-
tion and give explicit estimates for the deviation of the approximation given by NLCME
from the exactdynamics, governed by AMLE. NLCME is known to have gap soliton
states. A consequence of our results is the existence of very long-lived gap soliton states
of AMLE. We present numerical simulations that validate as well as illustrate the limits
of the theory. Finally, we verify that the assumptions of our model apply to the parameter
regimes explored in recent physical experiments in which gap solitons were observed.

1. Introduction

There is a great deal of current interest in nonlinear optical phenomena in periodic
structures. This interest has been fueled by advances in fabrication methods for periodic
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media and in their potential for use as components in all-optical communication systems
and computers. The potential for applications is due to the rich variety of phenom-
ena that result from the interactions of sufficiently intense (nonlinear) electromagnetic
fields with the underlying (linear) dispersion characteristics of the periodic structure
[47]. The reason one may envision the use of nonlinear periodic structures in opti-
cal devices stems from the observation that one can achieve very strong dispersion of
a light pulse over very short distances by arranging the wavelength of light and pe-
riod of the medium to be appropriately resonant. At sufficiently high intensities, one
then expects a balance between nonlinear and dispersive effects over short distances,
thus giving rise to a rich class of phenomena in structures of small physical dimen-
sions.

This paper is motivated by experiments and theory on nonlinear wave propagation in
one-dimensional periodic structures. Our goal is to validate the nonlinear coupled mode
equations (NLCME), a model commonly used to describe this situation, and to clarify the
roles played by the various physical mechanisms. The experiments involve the propaga-
tion of intense light in an optical fiber waveguide whose core has a periodically varying
index of refraction along the length of the fiberfiber grating [25]. Experimental-
ists have observed the formationg#p solitonssolitary-wave—like localized structures
whose time-frequency parameters lie in the photonic band-gap associated with the back-
ground periodic structure. These are of potential interest for use in all optical storage
devices, since they can, in principle, travel at arbitrarily low speeds. Theoretical work
on nonlinear propagation in periodic structures goes back to work of Winful et al. [44],
[45], and Chen and Mills [8]. Explicit gap soliton solutions were derived in the context
of a slowly varying envelope theory by Christodoulides and Joseph [9] and in a more
general form by Aceves and Wabnitz [1]. For surveys on aspects related to this paper, see
de Sterke and Sipe [11], Brown and Eggleton [7], and Kurizki et al. [17]. Experiments
demonstrating the existence of gap solitons have been performed by Eggleton, Slusher,
and collaborators [13], [14], [15], and by Broderick and his collaborators [6], [34]. In
two and three dimensions, Akbek and John have formally derived envelope equations
and examined their solitary waves numerically [3].

Inthe remainder of this section, we give a brief overview of the underlying physics and
modeling assumptions. We also introduce the analytical and numerical results developed
in this article.

Electromagnetic wave propagation in a dielectric medium is described by Maxwell’s
equations together with an appropriate constitutive relation describing how electromag-
netic waves interact with matter. An optical fiber has a high inclere and a slightly
lower indexcladding This index configuration confines rays to the core (total internal
reflection) or, from the wave perspective, the index profile provides a potential well with
a ground state (core mode) having most of its energy confined to the core. In the regimes
that interest us here, to a very good approximation the energy distribution has a fixed
transverse structure given by the core mode, and one may think of the transverse core
mode amplitude as varying with tinteand distance along the waveguideln addition
to this geometric constraint, we incorporate the following effects:

(i) Noninstantaneous response of the medium to the TiblelpolarizationP, is related
to the electric fieldE, via an anharmonic Lorentz oscillator model.
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Fig. 1. A schematic drawing of an optical fiber with periodic refractive index variation.

(i) Periodicity of the mediunSpatial periodicity of the medium is built in by allowing
the coefficients of the anharmonic Lorentz oscillator to vary periodically in space.
A schematic of the physical system is shown in Figure 1.

(i) Nonlinear effects at appropriate intensitiebhe implied relation betweeR and
E is such that regions of higher intensiti|> have higher refractive index. This
is a so-called focusing (Kerr) nonlinearity. The localized region of higher intensity
effectively creates an attractive potential well.

The effects of noninstantaneous response and spatial periodicity each give rise to
dispersion the property that waves of different wavelengths travel at different speeds.
The type of dispersion due to (i) is calleldromatic or material dispersioand that arising
due to effect (ii) is callegphotonic band dispersioiT his results from interference effects
arising from reflection and transmission in the periodic structure.

A model incorporating the above geometric constraints and physical effects is a
variant of the Anharmonic Maxwell-Lorentz system [5], [36], [24], which incorporates
the spatial periodicity. This system is displayed in (6), and we shall refer to it below as
AMLE.!

While in a bare (homogeneous, nongrated) optical fiber, light injected at one end
of the waveguide will propagate with little back-scatter, significant back-scattering will
occur in the presence of a periodic refractive index. This effect is most pronounced
when the wavelength of light is roughly twice the grating periatl,the case oBragg
resonanceln this case there is strong coupling between backward and forward waves.
We will assume that the variation of the index of refraction about its mean is small and is
denoted by a parameterIn terms of this parameter, we consider the following scaling
regime:

o amplitude of the field~ O(/¢), and
o initial spectral support of the pulse is concentrated in a wavenumber range of width
O(¢) abouttkg = +7/d.

Therefore, the spatial structure of the fielsnd P may be viewed as functions of the
form /e A(ex)€*=X, where A(y) is a localized function of/. We shall refer to this as

1 In the nonlinear optics literature, the relation between polarizafiand electric fieldE is often taken to

have the formP = ffoo x(t—1)E(r)dr +---. The class of models we have chosen gives the same envelope
equation, NLCME, in the scaling regime considered but has the added feature that it conserves energy. Energy
estimates are central to our proof of the validity of NLCME: Theorem 1.
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Fig. 2. A schematic of a wave packet under the SVEA, with envelope with
width ¢, amplitude,/e, carrier wavelength@®, and a plot of the index of
refraction variation with variation of sizeand periodd.

theslowly varying envelope approximati¢8VEA). A schematic of this scaling ansatz
is shown in Figure 2.
Under these assumptiomgnlinear coupled mode equatiofdLCME, see equations
10) can be derived that govern the forwdtd and backward=_ propagating electric
field wave envelopes on timescales of ordet. Thus, in this regime, the fine scale
grating oscillations are effectively averaged and the original mathematical description
in terms of a nonlinear partial differential equation with spatially periodic coefficients is
replaced by a constant coefficient dispersive nonlinear partial differential equation.
The main results of this paper are as follows:

Characterization of Phenomena: The formation of long-lived coherent structures (gap
solitons) is the result of a balance between the effects of dispersion and nonlifearity.
The energy in a wave packet, with frequency content localized about the Bragg res-
onant frequency, resolves into backward and forward propagating waves. If the field
amplitude is appropriately large relative to the the amplitude of periodic variations in
the medium, then wave energy does not disperse and is localized in space. Nonlinearity
generates ever higher harmonics which is manifested in wave steepening and apparent
carrier shock formation; see Sections 3.4 and 3.6. However, in the presence of material
dispersion due to finite time response, a stable balance between dispersion and non-
linearity is achieved; no shocks form, and one has long-lived stable gap solitons (see
Section 2.2, Theorem 1, and the corollary of Section 3.7). We also verify (Appendix A)

2 In contrast to the case of bare fiber, for which this balance is achieved over lengths of optical fiber on the
order of tens of kilometers, for the periodic structures and intensities used in the above cited experiments, this
balance occurs on a length scale of centimeters; see Appendix B.
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that parameter ranges corresponding to experiments are described by our model and
theorem.

Analytical—Theorem 1: We prove that solutions to the initial value problem for AMLE
with finite energy and nearly monochromatic initial conditions, as above, give rise to
solutions that are well-approximated, on appropriate timescélés¢)) by a super-
position of amplitude-modulated backward and forward propagating plane waves. The
backward and forward amplitudes satisfy NLCME. Further, we estimate the deviation
of the NLCME approximation to the AMLE solution. An important class of solutions

of NLCME are so-calledyap solitons’ These are spatially localized nonlinear bound
states [1] that have been observed experimentally. Our results imply the existence of
gap soliton wave packets for AMLE on timescal@& 1), see Section 6. Our method
follows previous rigorous studies of the validity of solutions to envelope equations in
approximating oscillatory, nearly monochromatic solutions to evolution PDES in one
space dimension; see, for example, Kirrman, Schneider, and Mielke [27] and Pierce
and Wayne [37]. A related method presented in the context of dissipative equations is
given by van Harten [41]. Important extensions of such methods have been developed
in Donnat and Rauch [12], Joly, Metivier, and Rauch [23], Lannes [31], and Schochet
[39], [40] where multidimensional and multiphase problems are treated. These papers
do not treat the resonant interactions of multiphase waves with periodic media, although
the formulation of [12], e.g., can easily be extended to deal with the present one-space-
dimensional problem. Here, however, we provide a self-contained, elementary treatment
of the one-dimensional problem. We also wish to note a recent general paper of Babin
and Figotin [4] on wave interactions in periodic media.

Numerical Simulations: We numerically simulate AMLE and NLCME and system-
atically compare their computer-generated solutions with a view toward checking the
error estimates of Theorem 1. Initial data appropriate for Theorem 1 consists of a slow
modulation of a highly oscillatory wave. In the main numerical example presented in
Section 7, we have simulated the AMLE evolution with gap soliton wave packet initial
data. We take data with an envelope whose full width at half maximum (FWHM) mea-
sured in wavelengths of light is about 60; see Figure 7. In one run, the simulation of
AMLE took about % hours, while the corresponding simulation of NLCME took only a
few minutes on a 500 mHz Pentium Il computer running Linux. The advantage is even
larger when wavepackets with more oscillations are investigated. For parameter regimes
of physical interest, it is probably infeasible to simulate the full AMLE, while it is quite
simple to simulate the NLCME. In the physical experiments [13], pulses on the the order
of 30 ps FWHM are observed}(10%) wavelengths.

In our numerical simulations, we identify three time regimes. The first is the timescale
on which the coherent structure evolves as a gap soliton plus fluctuations satisfying the

3 Here, we adopt a common usage of the teglitonas referring to a nonlinear bound state solution or solitary
wave. The term originally and still often refers more specifically to nonlinear bound states arising in completely
integrable systems.
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estimates of Theorem 1. The second is a longer timescale on which the wave envelope
predicted by NLCME gives an accurate prediction of where the field energy is, but due
to phase drift, the norm estimates of the error in Theorem 1 fail to hold. The third is
a regime on which the wave envelope begins to steepen asymmetrically and radiate
energy, leading to a decay of the gap soliton. A description of this process would require
the inclusion of higher order nonlinear wave-steepening and dispersive corrections to
NLCME.

The structure of this paper is as follows:

In Section 2.1 we introduce the anharmonic Maxwell-Lorentz model (AMLE) and in
Section 2.2 we describe and display the nonlinear coupled mode equations, discuss their
mathematical structure, and state our main theorem (Theorem 1) relating solutions of
AMLE tothose of NLCME. In Section 3 we discuss the effect of the nonlinearity, periodic
structure, and material dispersion and describe the physical effects of including, exclud-
ing, and variously combining these mathematical features of the system. In Section 4 we
present a derivation of NLCME from AMLE using the method of multiple scales, and
in Section 5 we discuss existence and uniqueness results for AMLE and NLCME, some
of which are needed in Section 6, where we prove Theorem 1. In Section 7 we report
on numerical simulations and careful systematic comparison of solutions to AMLE and
NLCME. In Section 8 we present a short summary followed by a discussion of issues
meriting further investigation. The appendices contain a discussion of nondimensional-
ization and physical parameter magnitudes, and details of dimensionless values used in
the numerical simulations.

Notation and Conventions

Throughout this paper, we make use of following notation:

The symbolsC, C; are used to represent generic constants whose dependence on
parameters is specified when of concern.

For a vector-valued functiofi(z), the L P-norm is given by

/p

1
1l = (/ij(znpdz) : (1)
i

Here and throughout, spatia)(integrals are taken overoo < z < oo. The space.?
is then the space of all functiorfssuch that| f |, is finite.
TheL* norm is given by

Il = mjax(ess supf;(2)]) , 2

with the space_° thus defined as the set of all (essentially) bounded functions.
The H® norms may be defined as

s 2

S

k=1

k

dxk

-

f ©)

2

The spaceH® is the space of all function§ such that)| F|| ns is finite, that is, the space
of functions such that the function and its fissflerivatives are square-integrable.
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Finally, for a given Banach spacg with norm|| - ||x, we define
C(0,T); X)

to be the set of functions$: t — f(t) € X that are continuous far € [0, T) with
values inX.

2. The AMLE and NLCME Equations

2.1. AMLE, Nondimensionalization, and Parameter Regimes

In this subsection we introduce AMLE with physical parameters and then introduce its
nondimensional form. We then discuss parameter regimes associated with the above
mentioned experiments.

We take as our basic model a one-dimensional electromagnetic system satisfying
Maxwell’s equation, with the polarization governed by an anharmonic Lorentz oscillator
model?# henceforth referred to as the anharmonic Maxwell-Lorentz equations (AMLE)
[5], [24], [36],

nodD = 6B, 9B = 9;E, (4a)
D = ¢E + P, (4b)
#5292P + (1 —2An cos(zlsz)) P—¢P3= e VE. (4c)

Here,E is the electric fieldB is the magnetic fieldP is the polarization, an® is the
electric displacementgy and 1o denote, respectively, the permitivity and permeability
of free space, angd? is the linear polarizability of the medium. Recall thgt.o = ¢~2,
wherec is the vacuum speed of lighhn measures the strength of the grating. We shall
also write

An = gv, )]

wheres measures the size of the index modulation aredof order one and is introduced
in order to make explicit how the spatially periodic structure rears its head in the envelope
approximation, NLCME, to be derived below.

4 Our results and analysis apply to the generalization of this model where we takiee a weighted sum of
N polarizations P, corresponding to different molecular excitation modes of the material:

N
P=) R: & %?R +(1—2An cos2ke2)P — ¢ P® = cox " E.
i=1

This model can be viewed as a nonlinear generalization of the Sellmeier model (132); see [2]. With this
particular modeling of the polarization, AMLE has the important property of being an energy conserving
system. This structure gives risednergy estimatethat are central to our proofs of well-posedness of AMLE
and of the validity of NLCME as an approximating envelope equation; see Sections 5 and 6.
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The spatial period of the mediumdsand is expressed in terms of

~ T
kg = a4

Since we are interested in the propagation of light with wavelength equal to the Bragg

wavelength, we set

A=2d,

whered denotes the period of the grating.

In Appendix A, we eliminate the magnetic fieRlfrom this system and nondimen-
sionalize these equations. There, nondimensional dependent variables are primed, but
here we drop primes for simplicity of notation. From (127), (125b), and (125c), we obtain

32D = 92E, (6a)
D=E+P, (6b)
wg 202P 4 (1 — 2ev cog2kp2))P — ¢ P* = (n* — 1E. (6¢)

wp is a dimensionless frequency, apds a dimensionless measure of the degree of the
nonlinearity. The limit of instantaneous polarization is achieved by taking the parameter
wp — 00. This gives the relation

P = P(E) = (14 2svcos2kg2)E + xPE3 + ...,

with nonlinear polarizabilityy ® and, in this case, equation (6) reduces to the scalar
nonlinear wave equation,

32(n?E + 2ev cog2kp2)E + x P E3) = 92E. 7

2.2. NLCME and Main Results

The nonlinear coupled mode equations are introduced by considering slow modulations
to solutions of the anharmonic oscillator model in which the photonic structure and non-
linearity are ignored. When = 0 and¢ = 0, system (6) supports plane wave solutions

of the formE = E_ & &kzob wherek = k(w) is the dispersion relation (see Section 3)
andE.. are constants. A similar statement holds farln the scaling regime described

in the introduction, in which nonlinear effects and spatial periodicity are allowed, and
where the carrier wave has wavenumkgand frequencws = w(kg), we seek coupled
andslowly modulatedbackward and forward plane wave solutions of the form

(EﬁlLCME> ~ e (EL(Z, T)dkezosh) L E_(Z, T)e ' keztesh) 4 c.c.) < 1) 8)
PrflLCME YB

wherec.c. denotes the complex conjugate of the previous expressioygady (wg)
is a constant. HereZ andT are “slow variables,”

Z=¢z, T = e&t, 9
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andE, andE_ satisfy equations of the form

i (9rEy +vgd2Ey) +kE_ +T(EL?+2/E_[)E;L = 0, (10a)
i (9rE- —vgdzE_) +kE4 + T(|E_|* +2[EL[HE_ = O. (10b)

Here,« is a coupling parameter (proportional tanduced by the gratinglyg is the
group velocity of the linear dispersive wave at frequenagy andT is the nonlinear
coupling parameter (proportional #). The explicit expressions for these coefficients
are displayed in Section 4, during the derivation of (10); see (61).

The expression in (8) foE® and P¢ is a formal approximate solution to AMLE
satisfying the “nearly monochromatic” initial condition:

E(z,t=0 I S
(sz (_ 0;) = V2 (Eor (e2)0,€** + Eo_(e2)9_e7"* +c.c.) + Oe), (1D
wherev,. are constant two-component vectors.

We prove the following result in Section 6:

Theorem 1. Consider AMLE with a general nonlinearity satisfying Hypothesis 2 of
Section 6. There existg > 0such that forany J > 0and any0 < ¢ < &g, the solution
(EEAMLE> of AMLE with data (11) belonging to His well approximated by a solution

AMLE
of NLCME in the sense that for alld [0, To/¢] the following estimate holds:

” (EXMLE) _ (EI{ILCME>
PASMLE PlflLCME
We note that due to Sobolev’s inequalit§,(x)| < C|| f|41, a small error in thed*

norm ensures a small pointwise error, so that the above statement gives uniform bounds
on the error.

< C(To; wo, v, N)e. 12

H1

3. AMLE, NLCME, and Physical Phenomena

The physical phenomena modeled by AMLE and NLCME result from competition
among: (i) nonlinear effects, (ii) dispersion due to finite time response of the medium
to the field, and (jii) dispersion due to reflection and transmission in a spatially periodic
medium. This section is divided into subsections in which we study, by considering

5 Beginning with a three-dimensional Maxwell-Lorentz model in fiber geometry, it is possible to derive similar
nonlinear coupled mode equations, with one difference being that tha ¢ |2 + 2| E; |%)E. is replaced

by one of the formTg| Ex|? 4 20| E+ [2)E., wherel's andl"y are the nonlinear self-phase modulation and
cross-phase modulation coefficients, and depend on certain integrals of the transverse modes of the waveguide
[1], [35]. Another difference one finds is that the transverse potential, defined by the refractive index profile,
inducesvaveguide or modal dispersiofhus, a more complete description of the physics leads to corrections to

the free space dispersion relation due to material dispersion, photonic band dispersion, and modal dispersion,
as well. The multidimensional analyses of [12], [23], [31], [40], [39], which assume “almost” plane wave
solutions, do not appear to generalize (easily) to the waveguide problem.
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various choices abyg, ¢, andg in (6), the action of these effects (terms in the equations)
individually and in concert.

3.1. Linear Spatially Homogeneous Structure with Instantaneous Response

In this caseg = ¢ = 0 andwy = co. Therefore,P = (n? — 1)E and the evolution is
described by the classical wave equation,

n?5?E = 92E, (13
whose solutions are of the form
E(z,t) = e (z—t/n) +e_(z+t/n), (1%

correspondingd a a superposition of left and right moving waves that propagate without
distortion.

Alternatively, we can first seek elementary plane wave solufiqast ; k) = e~ @t+ikx,
We then find thad andk are related by the simptiispersion relation (k) = :i:%. Since
the phase velocityy (k)/k, is independent df, all wavelengths travel at the same speed,
and we refer to (13) asondispersiveStandard Fourier superposition of these plane
waves yields the general solution (14).

3.2. Linear and Homogeneous Medium with Finite Time Response

In this case, we have

32(E+ P) = 92E, (15a)
wy?0?P 4+ P = (" — 1)E. (15b)

We may still find plane wave solutions

Eo\ (1) kzown
(%) =)o @

wherek andw are related by thdispersion relation

17

and

1- ()
(2]
In the relevant parameter regimes, > »? andn? — 1 > 0. So,y is positive, corre-

sponding to polarization in phase with the electric field. Note that imthe> oo limit,
we recover the wave equation dispersion relakea +wn.
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A general solution may be constructed by superposition of these plane waves using
the Fourier Transform. Using the method of stationary phase [43], one can show that
for initial data whose Fourier transform decays sufficiently rapidly, the amplitude of the
solution decays as:.

3.3. Linear Periodic Structure, Instantaneous Response

In this case, we také = 0 ande # 0. We consider the case of instantaneous response,
wo = 00, though the methods apply to finiig as well. In this case we have the scalar
one-dimensional wave equation with spatially periodic wave speed:

(n® + 2¢(n — 1)v cog2Kp2)) HE = IZE. (19

In analogy with the scalar and spatially homogeneous wave equation, we seek solutions
of the formE(z, t) = e'“'¢(2). This yields the Mathieu equation:

— 32¢(2) = »* (n* + 2e(n* — 1)v cog2Kp2)) ¢(2). (20)
We now seek solutions of (20) of the form

02 = X%y (z K), K € [0, 27), (21)
Y(z+d; K) = ¥ (z K), (22)

whereyr has the same periodicity as the medium. Therefp(e; K) satisfies the bound-
ary value problem:

— (3, +iK)?Y(z K) = o? (n® +2e(n* — Dvcos2Kp2)) ¥ (z; K),  (23)

Yz+dK) = y(z K), dzki. (24)
B

For eachK, there is a discrete set of eigen-solutidpgs,(z; K) : m = 1,2, ...} with
corresponding eigenvaluden(K)? : m = 1,2, ...}. As K varies over the interval

[0, 2), the functionsw?,(K) sweep out spectral (photonic) bands. These bands are
separated by spectral (photonic band) gaps. The solutions

Em(z, t; K) = e 'on(®tHKzy (72K), Ke[0,27), m=12.... (25)

are generalizations of plane wave solutions of the previous subsections. In contrast to
the homogeneous medium case, where the allowable set of frequencies varies over the
entire real line, in the periodic case the allowable set of frequencies varies over selected
bands. The band dispersion relatiofs,(K) : m = 1,2,...}, play the role of the
dispersion relationg (K), for the homogeneous medium (constant coefficient partial
differential equation). Since the phase velociigg K)/K are not independent df,

we see that wave propagation in periodic media is dispersive. A generalization of Fourier
superposition holds, enabling one to construct the general solution to the initial value
problem for (19). A careful stationary phase analysis of this superposition formula can
be made, yielding results on the spreading and temporal decay of solutions [30].
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Thus, Floquet-Bloch theory gives a complete characterization of wave propagation
in a linear periodic medium. However, the key to understanding the detailed properties
of this propagation is a detailed knowledge of the band dispersion functign).

This is a difficult problem, in general. In the case when the periodicity is given by a
small oscillation about its mearn Emall), coupled mode theorf29] can be used to
approximate the Floquet-Bloch spectral theory. This provides a satisfactory description
of the wave propagation for large, but finite, times. We illustrate this for equation (19).
The idea is that foe small, the solution&,(z, t; K) should be well-approximated by
plane waves of the unperturbed= 0 problem. Thus, we seek solutions of (19) in the
form

E = (E4(ez, et)e*e@ " 4 E_(ez, et)e k@ 4 c.c) + O(e), (26)

and derive equations for the slowly varying functidhs(Z, T), E_(Z, T), ensuring that

(26) is a good approximation of a solution for timespf orders—2. This approximation

and error estimates are derived systematically in Sections 4 and 6 in the nonlinear context
of AMLE. Inthislinear setting, the equations reduce toithear coupled mode equations

(cf. equations (10)):

i (9rEy 4+ vgdzEy) +xkE- = 0, (27a)
i (0rE- —vgdzE_) +«xE4 = 0, (27b)

wherevg = o' = n~1is the group velocity (which happens to agree here with the phase
velocity, w (K)/k), andi = KDy,

The opening of the first “photonic band gap” can be deduced from (27). Seeking
solutions to (27) of the form

E+ _ AQZ-Q(Q)T) ng

Q%(Q) =n~2Q% + k2. (29)

The photonic band gap is pictured in Figure 3, which clearly shows a region of excluded
frequencies centered aroutdd= 0. For in the gap,Q is imaginary, indicating that
frequencies in Bragg resonance with the grating cannot propagate.

Finally, combining (28) and (29) with (26) gives the following approximation to a
band edgd-loquet-Bloch generalized plane wave:

we find

E@Z t; K)lk=ks+:Q
— ((/’+ei[(kB_SQ)Z_(O)B"FSQ(Q))t] + & e lketeQzt(@s+e(QNY] . O(e). (30)
3.4. Nonlinearity, Instantaneous Response, and No Periodic Structure

Here, we takevy — oo ande = 0 in (6). The equations then reduce to

92(E + P) = 92E, (319
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K=k—k0

2K

Fig. 3. The dispersion relation for the linearized coupled
mode equations, showing the spectral gap.

and, for smallg,
P=PE)=N*-DE+ x®E3+.... (31b)
These may be combined to give

3?D(E) = 92E, (32a)
D(E) = nE+ x®E3+-... (32b)

To study this system, we first rewrite it in a more standard formalLet/C~1(E) =
D(E). Then, (32a) become®v = 32K (v). Introducingd,u = v, we obtain after one
integration

82U = 9,K(3,u). (33

Equation (33) has the form of the equation governing the vibrations of a nonlinear string,
where the electric displacemei(E), plays the role of the strai,u.

A classical result of Lax [32] states that systems whichgaeuinely nonlineain
the sense that”(0) # O, or equivalentlyD”(0) # O, will develop singularities in finite
time. SinceD”(0) = 0, the quasilinear (32a) does not satisfy the genuine nonlinearity
condition, althoughD”’(0) # 0. Klainerman and Majda [28] generalized Lax’s result;
if agp“) D(0) # 0 and the initial data is of size then singularity formation takes place
within a time interval of lengtiO (s ~P).

In particular, it follows from this result that for initial data of siZ&(./¢) (see (8)),
u(z, t) develops a singularity in its second derivatives witkiis ~*) time. Thus,E

8 The classical relation between tensienand straing,u, is derived via

K(3:U) = 3,u(L + (3,u)?)~ 3 7(3,).
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Fig. 4. Evolution from sinusoidal initial conditions (solid line) to near shock
formation (dashed line, with shock location at #)én Maxwell’'s equation with
instantaneous nonlinear polarization.

remains bounded, bdtE tends to infinity at the singularity time. This isshocktype
singularity. Specifically, the results of [28] imply the following:

Theorem 2. Consider the quasilinear wave equation (32a) with smooth initial data
E(z,t = 0), &E(z,t = 0), which are of order,/s. Then, there exists a finite and
positive time, Te) < Ce™1, such that

sup IE(, 1)l < 00, (34
0<t<T(e)
while
lim [10:EC, Do + 1HEC, )]leo = 00. (39
t/T(e)

Such carrier shock formation in the context of nonlinear optics has been discussed by
heuristic arguments in [16], [19].

Figure 4 shows a simulation of the shocking process on a single carrier' \Gom:-
putational details are given in Section 7, and computational parameters for this and all
subsequent numerical results are given in Appendix C.

7 This computation is actually performed on the AMLE system with a very fast material respgnsel;
see Appendix C. The simulation is run to the time the shock “would have formed” in the absence of material
dispersion.
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0.25

Fig. 5. Solution of AMLE after the “shock time” with smadb,.

3.5. Nonlinearity, Finite Time Response, and No Periodic Structure

The mathematical model in this case is AMLE, (6) with= 0. Joly, Metivier, and
Rauch [24] proved that the initial value problem for the full three-dimensional AMLE,
for some class of nonlinearities, does not develop singularities in finite time. In Section 5
we outline a proof of this result for our simpler one-dimensional model. Therefore,
material dispersion, resulting from the finite response timg € o), inhibits shock
formation by providing a mechanism for expelling high frequency modes away from the
steepening regions.

Numerical experiments suggest an interesting small dispersion limaiy #snds to
infinity in (6¢). Note that for O< wg < oo the system is semilinear, but the limiting
system is quasi-linear.

Two computations with increasing valuesaf are shown in Figures 5 and 6 at a
short time after the shock formation time in the dispersionlegs=£ oo) limit. As
wo — 00, the number of oscillations increases and, in some weak sense, the solution
more closely approximates a weak solution to the Maxwell system with instantaneous
nonlinear polarization.

The small material dispersiom§ > 1) limit of AMLE is analogous to the small
dispersion limit of the Korteweg-de Vries equation (KdV),

BU + ud,u 4 ed2u =0, (36)

the equation of the free surface of an air/water interface in the regime of long waves of
smallamplitude. The dispersionless- 0 equationis thawviscid Burgers equatioand is
easily seen to develop shocks (singularities in derivative3ioffinite time [43]. Fore #
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Fig. 6. Solution of AMLE after the “shock time” witlw, twice that of Figure 5.

0, solutions of KdV do not develop singularities [26]. For initial data that give rise to shock
formation fore = 0, one observes, farsmall, a scenario analogous to what we observe
for AMLE in the limit of wg large. KdV is an integrable Hamiltonian system that is exactly
solvable using the inverse scattering transform (IST) [18]. IST was used by Lax and Lev-
ermore [33] and by Venakides [42] to study this small dispersion limit. In particular, the
generation of oscillations is related to the dynamics of solitons. As in the case of KdV, for
AMLE one observesthe generation of solitary-wave—like oscillations as a result of carrier
wave steepening. Computer simulations indicate that these solitary waves interact more
strongly and generate radiation, a manifestation of AMLE’s apparent nonintegrability.

3.6. Periodic Structure with Nonlinearity, Instantaneous Response
In this case, the electric field is governed by
3’D(E,z) = 32E, (37a)
D(E,2) = (n”+2svcog2kg2)) E + ¢ E>. (37b)

The multiple scales approach implemented in Section 4 formally yields an expansion
of the form (compare with (8))

E=ve)y (EM(Z TemeEtn 4 EM(z, T)e M) cc +e3Ey, (39)

m>1

whereE{™ = E{™(Z,T) = E(ez &t), m > 1, satisfies a coupled system of in-
finitely many partial differential equations. This is in contrast to the eagse< oo,
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where the expansion is replaced by (8) involving onlyttheamplitudesE " at leading
(O(/¢)) order.

The reason for this difference can be seen by examining the equation for the correction,
E1, which takes the form

(n28t2 _ 322) E, = Z[Aa—(-l—’ Z)eiq(kz—u)(k)t) + A(;(T, Z)eiq(kz+u)(k)t)]
q>1
— +(-|—’ Z)eiqk(z—t/n) 4 _(T, Z)eiqk(z+t/n) ) 39

;[Aq Al L (9
The coefficientsAf; involve the unknown amplitudeE(im) and their derivatives. In order
for ¢ E; to be smaller than the first term in the expansiofoft is necessary to remove
all resonances from the right-hand side. Resonances are excited by components of the
right-hand side which are plane waves of the homogeneous problem. éif)< oo, the
unperturbed dynamics are dispersiuggk) £ gw(k)). Therefore, the contributions to
the above sum fog > 2 are nonresonant, and the nonresonance condition implies cou-
pled equations foE'” andE™ alone. In the case of instantaneous respomge{ co:
absence of material dispersion), all terms in the sum are resonant. Therefore, in order
to preclude secular growth, we requifed; = 0, m > 1. This yields a coupled sys-
tem ofinfinitely many equations governing the evolution of the backward and forward
amplitudes:E(im)(Z, T), m > 1. We do not address the question of whether the approx-
imate solution generated, via (38), is a convergent series that represents an approximate
solution of Maxwell’s equation.

Indeed, the contrast we find between the dispersiy@sitive and finite) and nondis-
persive {pp = oo) cases is consistent with the observations of the previous section
concerning shock formation and therefore the generation of high frequency harfonics.

Consequently, the NLCME system does not describe the evolution of the wavepacket
envelope for the system without material dispersion. Although the ratio of the effects of
photonic band dispersion to material dispersion in the experiments of Eggleton, Slusher,
etal. [13], [14], [15] is of order 18 we argue that nonlinearity rapidly (on a timescale of
orderd)gl) generates frequency content for which material dispersion is significant; see
Appendix B. As noted in Section 3.5, material dispersion regularizes the wave steepening
by propagating nonlinearly generated frequencies, which are nearly resonant, away from
a steepening front.

3.7. Periodic Structure, Nonlinearity, and Finite Time Response

In this case, we have the full AMLE equations (6). We show in Theorem 1 that, for small
amplitude waves in the SVEA regime, solutions to AMLE are well approximated by
solutions to the Nonlinear Coupled Mode Equations (NLCME).

8 Note, however, that the simulations described in the previous section are not for wavepacket initial conditions.
It is reasonable to ask whether the dispersion that comes from the photonic band structure is sufficient to
regularize shocks. Preliminary direct simulations for the nondisperstye=(co) limit employing numerical
schemes designed to capture shock-like structures indicate that shocks very likely form in the carrier, though
theenvelopeappears to evolve smoothly (E. Kirr, in progress).



140 R. H. Goodman, M. I. Weinstein, P. J. Holmes

The NLCME have a well-known class of solutions known as “gap solitons,” which
are able to propagate through the fibers at any velocity between zero and the speed of
light. We present them in the general form as derived by Aceves and Wabnitz [1]. The
solutions depend on two parametegis,< 1 ands,

| 1 .
£, = sae"\ | | X (sing) € sectis - isp/2) (402)
E — _qd" /‘;—F’A(sins)eis" sech(® + iss/2); (40b)

where

1 A 1—v\#
r= 1—2 C\1+v)/7

0 = yr(sind)(vg*Z — vT), o = yk(Cos8)(vywvZ —T),

s = sign(kT) _ [2d-v
= signted). = 3—p2 "’

Y e 1 giss 2
T ren )

Combining this family of exact solutions to NLCME with Theorem 1, we have the
following corollary:

Corollary 1. The gap solitons approximate €@(e) a family of long-lived solutions to
the AMLE system for times 6f(s¢™1).

The gap solitons solutions bear a striking resemblance to solitons of the Nonlinear
Schiddinger equation (NLS). In fact, in the limit« 1, v « 1, we may show that the
gap soliton may be written as a normal mode of linear coupled mode equations, slowly
modulated by an NLS soliton. To see this, we study the NLCME themselves under the
SVEA limit. We assumé small, and look for approximate solutions to (10) of the form

(E*) ~ SASZ, 8T, §2T)VdQZ-an), (41

whereV d(QZ-2T) splves the linearized NLCME. TheR.,. = +_/k2 + v2Q2, and A
solves

Q"(Q)

10c A+ =

afA + N|A]A, (42
with

. =8(Z-(QT), T = 8°T,

r v Q?
andN = - [3— ——2=—_|.
2 ( K2+USQ2)
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NLS has spatially localized standing wave solutions of the form

. 2\ s [ 2A

and if we letQ = 0 andx = 7 in this formula, then we recover exactly the leading term
in the expansion of the gap soliton for= 0 ands « 1. De Sterke and Sipe [11] show
additionally that the first two terms in the expansion of the gap soliton for $haaltlv
correspond to thé(8) andO(82) terms in the multiple scales construction of solutions
to AMLE with small wavenumbe®.

Therefore, we expect the following relationship among AMLE, NLCME, and NLS.
Foré < §p sufficiently small, NLCME has a solution of the type (41), whé&, 7)
satisfies NLS. The validity of NLS as an approximation to NLCME could be shown using
the methods presented in Section 6 and [27]. This solution of NLCME, generated by
NLS, gives rise to a solution of AMLE of the type (8), provided: ¢(8p) is sufficiently
small.

4. Derivation of the Nonlinear Coupled Mode Equations

In this section we use the method of multiple scales [43] to derive the nonlinear coupled
mode equations. We begin with the equation

32 (E + P) = 92E. (44a

We also specify a more general form for the nonlinear response in modeling the polar-
ization in (6c¢),

wg 202P + (1 — 2ev co2kp2))P + g(P, 2) = (n* — E, (44b)
where, for small values d?,
g(P, 2) = —¢P® + higher order terms (45)
We expand the dependent variables in powers of
E = e2Egt e2Ey + 6By +---, (46)
P=ciPy+e?P+e2Pot -, (47)

and expand the derivatives in terms of slow scales ezandT = &t:
ot — 0 +€edr and 9; — 9; + €0z. (48

To derive the NLCME, it will be sufficient for us to consider the equations for the first
two terms in the expansion, which may be written

0@EY?): Lo (Eg) — 0 (49)

3/2y. E1 — Eo 0
0¥ Lo (P) =5 (P0> * <2v cos2kg2) Po+¢P03>’ 0
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where
. . 92— 92 92
_ -1 -1 _ t z t
and
. 0t07 — 0,07 0t 0T
Ly = 2< 0 wgzat 3T) . (52

We now seek solutions order by order.

O(eY?) Atthis order, the solution to the linear problem is given by (16), wikeaad
o satisfy dispersion relation (17). Aswill be determined by the length scale of
the Bragg grating structure, we prefer to solve (17)#as a function ok:

w? = % (nwj + k%) + %\/ (N2wd + k2)2 — 4wik?. (53
Equation (53) has two roots corresponding to each choice of sign. In the limit as
wp — 00, the root corresponding to the plus sign divergesapwhile the root
corresponding to the minus sign approaches the finite veiwé = k?, as noted

in Section 3.1. We examine a pair of backward and forward propagating modes in
Bragg resonance with the fiber and having slowly varying amplitudes,

<Eo> = (E.(Z. T)gkez—ws) L E (7, T)e 'keztwsh) 4 c.c.) (y1> , (59
B

Po
where
T
ke = 4 (55)
n? -1
= —— 56
VB 1— (2,)_3)2, (56)
andwg is a root of (53) for the minus sign choice.
O(£%?) The equation at this order is
Ei\ _ Eo 0
Lo <P1) =4 <P0> + (21) cos2kg2) Py + ¢PO3> ' 57
Substituting in the solution to th@(¢¥/?) equation, we find
c E\ _ (. 2i (kedzE4 +we(ye + DoTEL) o kez-ost)
°\P) T \PZ20rE, +yevE- + 330 (E. P+ 2E-PE,
. 2i (—kgdzE_+wg(ys +1)orE_) i (ke ztost)
+ (%L;BBT E_+ysvE, +38¢(E_P+2/E,PE )&

0 3i (ke z—wst)
+ ¥ kez—oo
<V§‘¢ Ei)
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0 i (ke z—3wgt)
+ g (kez=30n
<3V§¢Ei E—)

0 i (ke 2+3wst)
+ g eeTeve
(3Vg¢E+ E2>

0 _3i (ke Z+wst)
+ g Sikezton
(V§¢ E3>

0 i (3kpz—wst)
e B B
- (3VB3¢ EZE* + vaE+>
0 B
+ <3yg¢E§ E* + )/BUE_) €

Of the terms on the right-hand side of (58), only the first two are potentially resonant
and may therefore give rise to secular growth in titne€lhe nonresonance condition
required to remove such resonances can be expressed as the requirement that the vector
coefficients ofe ks—sY ande keztest) photh lie in the column space dfy(wg, +kg);
see (51). Equivalently, we require that the inner product of each of these vectors with
the vector(—Loy 1, Lo01,1) be equal to zero. This yields the Nonlinear Coupled Mode
Equations (NLCME):

i (3kgz+wpt) +C.C. (58)

i (37 E+ +vgdzE+) + kE_ + T(|EL >+ 2IE_])E; = 0, (59a)
i (9rE- — vgdzE_) + kE4 + T(IE_> + 2|E4|)E_ = 0. (59b)
Here
wz
. ke(2% — 1)
vg = '(ke) = K (wg) ™+ = ——— (60)
ws (% - A+ )
0
is the group velocity, and the coupling and nonlinearity parameters are
2 _ 1 3 3, 2
K = ws(n”— 1) v,  =_"r8% 61)

2\ 2 - 2

[0} k 1 _ B
2<n2—1+( ——é)) B(1—2%)
Our proof of validity of NLCME on timescales of order? requires that we solve

explicitly for E and P through ordee. We solve (58) and obtain

(a,b)

E E
(Pi) = <P1%a’b)) +c.c., (62)

a=+1,43
b=13

such that for(a, b) # (£1, 1),

Eia'b) 0 o (@ksz-bogt)
EO Pl(a,b) = S(a,b) » (63)

whereS@P is determined in equation (58), and f@x, b) = (+1, 1), the right-hand side
is determined by using (59) to eliminaig E from the first two terms of (58). Once
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this is done, these terms take the form of the nonnull eigenvectofs ahd solving

this part of the equation becomes a trivial linear algebra problem. In this way we may
represent the approximate solution using dlyand theirZ-derivatives, so thdt? and

HS estimates on solutions to the NLCME suffice for proof of the main theorem.

5. The Initial Value Problem for AMLE and NLCME

Our proof of the validity of NLCME as an approximation to AMLE requires some a
priori knowledge of the solutions of these equations. In this section we outline the theory
of the initial value problems for AMLE and NLCME and collect the necessary facts for
the proof of the main theorem.

Both AMLE and NLCME are semilinear hyperbolic systems whose initial value
problems can be expressed in the form

FOt) = —iAD®) + J[D(M)],
O(t=0) = Do (64)

Here, A is a self-adjoint operator on a Hilbert spakieand J is a nonlinear mapping
from H to itself and®q € H.

We first indicate how AMLE and NLCME can be expressed in this form and then
show how the general theory aadergy estimatesan be used to conclude the existence
of global in time solutions.

AMLE:
To write the AMLE system, (6), as a first-order system we use the vari&hl8s P
andQ = 9;P. The AMLE system then becomes

&E = 9,B—Q,
B = 9,E,
at P = Q7
#Q = —wi(1—2svc092ks2))P — w3g(P, 2) + wi(n* — 1E. (65)
We now write (65) in a more compact form. Let
E 0 o, 0 -1
. |B . 0, 0O O 0
u=1p and M= 0 0 0 1] (66)
Q M -1 0 —w3 O
Then, the full system may be written
80 = MU + w3y (26v cog2kg2) P — g(P, 2)), (67)
whereé&, = (0,0,0, 1)T. Thus,
® =10, A=iM, (68)

J[®] = w3é4 (2svcos2ks2)P — g(P, 2)). (69)
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NLCME:
NLCME can be written in the form (64) with the definitions

E
o = (Ef> (70)
ol = <2 é) (71)
A = —ivgdz — kol (72)
_ i ((EsP+2E-P)E )
Je] = 'F((|E+|2+2|E+|2) E ) (73)

We now formulate the general initial value problem (64) as an equivalent integral
equation,

t
(1) =e—”“q>o+/ e A9 J[P(s)] ds. (74)
0

It is elementary to show [38] using the contraction mapping principle that in both
examples, for any initial conditiotq in the Hilbert spacé{ = H?, there is a maximal
time Tmax = Tmax(|Polly:) > 0 and a solutiond(t) of (74), which is defined for
t € [0, Tmay, the maximal time interval of existence. The solutib(t) € H? for each
t € [0, Tmax) @nd the functiort — ||®(t)||x: is continuous fot € [0, Tmax)- Finally,
eitherTmax < 00 Of Thax = 00. If Tmax < o0, then

t%n @)1 = oo, (79

max

and we say that the solutioh(t) blows up at timeT,a in H. As we have seen in
Theorem 2 of Section 3, in the absence of material dispersion, solutions of the AMLE
system do develop singularities in their gradients in finite time. We claim that for both
dispersive systems AMLE and NLCME no singularities form:

Theorem 3. For initial data in H, Tnax = oo. That is, AMLE (under Hypothesis 1
below on the nonlinearity) and NLCME have! Holutions that are global in time.

To prove this theorem, it suffices to show thaTifis an arbitrary time, then thiel
norm of any of the components df(t) satisfies an estimate

[ (I = C(To). (76)

The constan€(T;) may depend on and even grow with, but must be finite for finite
values ofT;. To prove (76), we use a combination of the conservation laws associated
with AMLE and NLCME as well as direct a priori estimates on the evolution equations.
We consider the cases of AMLE and NLCME individually.

Proof of Theorem 3 for AMLE.We use the formulation for AMLE given in (67) or,
equivalently, (65). Our proof makes use of the following technical assumption on the
nonlinear term that ensures the existence of global solutions for arbitrariisidata:
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Hypothesis 1. There exists a constant C, such that for all z,
l9(P, 2)| +13.9(P, 2)| = C|P|, [0pg(P, 2)| = C. (77
The first step is to derive agnergy estimatéor AMLE. Taking the dot product of
(67) with the vecto(E, B, (n®> — 1)~1P, @y 2(n? — 1)~1Q) yields
d1l 1 1
Bl E2 4+ B? PP+ — — Q?|dz
dtzf( tEt n2—1 +w§(n2—1)Q

1/ cog2kgz)PQdz— 1 /g(P,z)Q dz

nz—1

2V
nz —

C/(P2+ Q) dz (78)

The previous inequality follows from Hypothesis 1. It follows that

A

t
G2 < I0olf2 + C / IG1F. ds 79
0
for some positive constaf; and therefore, by Gronwall’s inequality,
IG Il < 1Tz €. (80)

Estimates for th& 2 norm ofd, U are obtained in a similar manner. We first differentiate
equation (67) foti with respect t@, and then take the dot product withy E, 3,B, (n> —
1)7%9,P, wy?(n? — 1)~13,Q) and obtain

di1 1 1
e E2 4+ B2 p2 2)dz
dt2/< 2t ZJrn2—1 Z+w§(n2—l)QZ

= % /[2 cos2kg2) P,Q; — 4kg sin(2kgz) P QZ] dz

! lfazgm, 2Q, dz

n2 —

1
~; [ oeaP.2P.Qudz-

n2
< C/(P2+Q2+ P2+ Q%) dz. (81)

This, together with the aboue” energy estimate, can be used to conclude, by Gronwall’s
inequality,

1Tl e < ol e €. (82)
Since theH ! norm ofii grows at worst exponentially, we conclude tfigaty = oo. This
completes the proof dfi existence for solutions to AMLE. |

Proof of Theorem 3 for NLCME
Proposition 1. Let E = (E4, E_) satisfy system (59) with initial conditiors(0) €

He for s > 1.° Then there exists = Cs(|E(0)]|ys, T) such that||E(T)|ys <
Cs(IEO)||gs, T). Moreover, Gxg, X2) — 0as x — 0.

9 In our proof of Theorem 1, we use this result fog 3.
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Proof. Itis easy to see that system (59) preserves theorm. To obtain this and higher
LP bounds orE., we multiply both sides of (59a) K¥.|” E% and (59b) by E_[* E*,
add them, and take the imaginary part, yielding

1
- (aT(|E_|20’+2 + |E+|20‘+2)) + vaz(|E+|2(T+2 _ |E_|2(7+2)
o+1

+H(E+E* + E_LEX)(IE4|* — |[E_*) = 0. (83)
If o = 0, then the last term is identically zero, showing tmﬁtné is conserved? If
o > 0, then we may bounfiE || using Gronwall’s inequality,

d = 242 o 2042
ﬁ||5||25+2 (o + D€

IA

= 2042

DT
1€ 25+2 DT,

IA

€0l 25+ 2€°
z 7
€0l 251267 (84)

IA

1€ 12542
Letting p = 20 + 2, this is just
IENp < 1ol (85)
As cis independent op, this estimate holds fdr .
The L*™ bound can then be used to bound growth rates of.thaorms ofdzE.. in

terms of T. Taking Z-derivatives of the NLCME and performing a similar calculation
with o = 0 yields

%uazéni < clé - 0815
< ClEllt~192E 12
< clléoll;~€T oz (86)
so that
1€l < 1ol e . @87

This shows that we can indeed bound the solutions of NLCMHB rand control them
for timesT = 0Q), i.e.,t = O(%). Proceeding similarly, we can derive bounds in

T
higher Sobolev spaces, specificaly norms IikeeCeceCT, andH? bounds likee®¢™ |
thus completing the proof of Proposition 1, and hence, by the comments preceding
Theorem 3, of that theorem. O

6. Validity of NLCME for Times, t, of O(¢~%); Proof of Theorem 1
We shall work with the formulation of AMLE given in (65).

We proceed under the following hypothesis concerning the nonlinegiityz) and
its derivativedpg(P, z) for small P:

10 Recall tha| ]|, = [ (|E4IP + |E_[P)dZ.
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Hypothesis 2. Assume g has partial derivative of order4 with respectto P and has
one partial derivative with respect to z that is continuous. Assume further (darg=
(3p9)(0,2) = (839)(0,2) = 0, and¢ = —£(339)(0, 2) # O and is independent of z,
and make the analogous assumptionsifgy. Therefore, there exists a positive constant,
C, such that for all z and all B P, with | Py| + | P| sufficiently small,

|9(PL+ P2,2) — g(P1, 2)| < C(IPi?+ P2 P2l
10pg(P1 + P2, 2) — 3pg(P1, 2)| < C(|P1| + |P2]) |P2l,
10,9(PL + P2, 2) — 3,9(P1, 2)| < C(IPi2+ |P2f%) P2l (88)

A

To obtain an approximate solution of (65), we require, in addition to our approxima-
tions of E andP, approximations t@® andQ through first order iz. We use the relation
ot B(t, 2) = 9,E(t, 2) to obtain the relations

0By = 0,Eo, (89)
0¢B1 = —0rBg+ 9;E1 + 92Eo. (90)
Also, usingQ = ; P, we find
Qo = 3 Po, (91)
Q1 = 9 P1+ 37 Po. (92)
We may then define
XE —g2 (Xo+eXy) forX=E,B,P, orQ, (93)

app

and write our approximate solution to (65) as

&
Eapp

g — | Bawe|. 94)
P Papp

e
app.

The full solution to AMLE may therefore be written as

=05tz T.2)+eR(t 2, (95)
where
Re
R EZE (96)
Ra

denotes the error term. To prove the main theorem, it suffices to prove that f&g an,
R* remains bounded of order one, in an appropriate norm, uniformly gurfficiently
small and 0< t < Topls.

We now derive the equation fdRe. Viewingt, z, T, Z as independent variables, (67),
the equation foi¢ can be rewritten as

30 = MU — eNT + w384 (2ev co2ks2) P — g(P, 2)), 97
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where
50 —3, 0 0
-, o 0 o
N=|l"9 0 & o (98)

0O 0 0 o

To obtain an evolution equation f&t°, we substitute (95) into (97) to obtain
B (Upp+ &R = Mg, + &R + eN (UG, + e RY)
+ wh8a(2ev c0A2Kp2) (Psy, + £RE) — 9(P,, +6Rb, 2). (99)

We may then eliminate from this two equations obtained during the multiple scales
expansion,

(@ — M)lo = 0 (100a)
(& — M) Uy = —No + 20564 c092Kp2) Py + wiésp PS, (100b)

to leave an equation for the evolution of the error alone
(&% — M)R® = —£3 Ny + 208 co2Kp2)(c? Py + £ RS)
+ w2y (—s’lg(PaepvaeRs ,2) +s%¢PO3). (101)
To this, we add and subtract'w§ésg(Ps,,, 2) to obtain
(& — M)R® = —£3 Ny + 2v8,co2Kp2)(e? Py + £ RS)
+ s (—e29(Papy D + 20 R5)
2evé, co92kgz) RS
+ & w58 (9P 2 — 9(Pipp + €R5. 2)) + 6715, (102)

where
7 = —e32 Ny + £2 w220 cos(2ke2) Py + wf (8%¢P§’ — g(P%,, z)) (103

is theresidual essentially the amount by whicly,; fails to solve (67).

We now consider the formal size of the second and third terms on the right-hand side
of (102). SincePs,, + eRe = &2 (Po+ &Py + 7 R) andg(P. 2) ~ ¢P3, the second
term of (102) is0(e). We further note that sin(ﬁ,f‘pp is an approximate solution through
ordere, the residual is formally of ordere? and so the third term of (102) ©(e).
In order to control this final term, we must calculate the approximate solution including
terms formally of ordee? and also require thd.. be in the Sobolev spadé?®.

From this discussion, we expect that, for times of orefel, R® will be bounded.
For convenience, we introduce a notation that makes explicit the expected size of the
residual:

ef =e71p. (104
It is then clear that in order to bourRf we will first need to bound.
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Proposition 2 (Estimation of the residual).Let (E,, E_) be a solution of the NLCME
system (59). Then there exists a constast @ depending on k and the Sobolev norms
of E.. of order up to three, but independentsofuch that for all0 < t < Toe ™2,

cel? (105)
C. (106)

[lahes
71 e

IA A

This proposition is a simple consequence of the explicit expression fdefined in
terms ofg) given in (103), and of Proposition 1.

Proposition 3. Let(E,, E_) be a solution of the NLCME system (59). Then there exist
g0 > 0and G > 0s.t.if 0 < e < &g, the solution of (102) satisfigldR®|| 41 < Cop for
alo<t < Tpe L.

These propositions imply Theorem 1.

6.1. Proof of Proposition 3: Estimates on the ErrdR®

Recall that the evolution equation f&¥ is given by
" " 1 .
R = MR° + é4a)§ (25\; cos2kg2)Rp — — (g(P, 2) — 9(Pzpp z))) +ef. (107
&
Motivated by the energy estimates used in Section 5, we introduce the weighted norms

IIRe(I? = fﬁs-Aﬁsdz

> 2 2 R,%Z Rf?z
= RE RE dz 108
/_w et B+n2—1+a)§(n2—1) (108)
NReNZ: = IReNZ + IdRe 12, (109)

where the weight\ is given by the matrix

1 1
A = diag <1, 1, ) ) .
n?—1" wi(n?—1)

These norms are clearly equivalent to the standlrdnd H* norms.
Then we have

d1l -
—ZIRI1? = 2¢v cog2kg2) RS
S lIRel nz_lf(” S2ke2)RS

1 & & E E
+ g[g(Pappv Z) - g(Papp+ eRY . Z)] ) RQdZ

+ sf Re - Afdz (110)
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Similarly, differentiation of (107) with respect mand left multiplication by, R*)T A
yields

d1l v
——|||azRf|||2 =

3t 1 / (2 cog2kp2)9,Rp9, R, — 4ks sin(2kez) Rp 9, Rg) dz

1
+8/(8pg( app 2 — 9PO(Pspp + eRp, 2)) 9, P50, R, dz
—[8P9(Papp+8R€,Z)3ZR|€3R£QdZ

1
+ 8/(829( wop 2) — 029(P5,, + €R5., 2) 0,RG, dz
s/azﬁa-AadeZ. (111)

Application of Hypothesis 2, the®> bound on solutions of NLCME of Proposition 2,
Sobolev’s inequality* [22], and interpolation yields

d - - - L
il R[> < Crelll RENIZ + Coe?lIRe NIy + ellF Il NI RE I 112
and
d e (12 e (12 2y e (|4 ? o
GellRN < CaelliRe s + Co? IR IIys + CaelloaF L2 IR e (113
Estimates (112) and (113) imply
d. s e (12 2 Re 4 2 S
GilIR G =€ (e|||R8|||H1 + E2IRe NI s + ellf s |||Rf|||H1). (114

If Re(0) = 0, then by equation (107), Re|| # 0 fort > 0. We therefore assume
I R5(0)|| > 0. We may then leg (t) = |||R5|||(t) Then (76) and th&l ! bound ort from
Proposition 2 implies

Z—i <Ce(1+¢ +ec?). (115
This differential inequality is easily solved, and we conclude that, foriagny O,
IR @®llg: < C IRl < C(To) forO<t < Toe™™. (116
Finally, we note that, as
i = Gnieme + 6201 + e R, (117)
then

. IR 5
U —Uniemellpr < e2[[Uallye + el R¥ | pa. (113

R < Clfllalidz fil e
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The estimates oft.. guarantee that the first term on the right-hand sid@s), and
Proposition 3 guarantees that the second terf(is. Thus,

U — Unicmelly: < CeforO<t < Toe n. (119

This completes the proof. O

7. Numerical Demonstration—Gap Soliton Propagation and Decay

We initialize a wavepacket for AMLE with many oscillations and an envelope whose
form is constructed using the gap soliton solution to the NLCME. The gap soliton
decays exponentially away from its “center.” We perform the simulations with periodic
geometry. The period is chosen to be several gap soliton widths so that the solution
is well localized away from the artificial period ends. The gap soliton initial condition

is initialized within the central region of the domain, so that the localized structure is
essentially unaffected by the boundary and propagates as though it were on an infinite
spatial domain. In addition, we compute the evolution of a solution to the NLCME with
corresponding envelope initial conditions, and use the formulae (54), (89), and (91) to
construct approximate solutions to AMLE for comparison.

7.1. Numerical Methods

We use a “method of lines” approach, meaning that we first discretize in the spatial
dimension, yielding a set of ordinary differential equationg iior the values of the
solution at the discretization points. We compute solutions to AMLE as the first-order
system given in (65). We restrict our computational domain to a finite period interval and
discretize with about 16 points per wavelength. Derivatives are computed spectrally using
discrete Fourier transforms [20]. That is, supp#5is the discrete Fourier transfori,

is the dual variable ta, and f is a vector of discrete values éf Then the approximate
derivative is given by

9, f = (FlieF) f.
The spatial discretization of system (65) may now be treated numerically as a system
of ODEs. A fixed-step fourth-order explicit Runge-Kutta method is used to integrate

the resulting system in time. Recall that mstage explicit Runge-Kutta method for a
general evolution equation

y®) = f(y,t)
is given by [21]:

kq f(Yk, ),

i—1
f(yk+aiAt,tk+Athi,jkj), fori =2,n,
i=1

ki

n
Yerr = Ye+ Y Giki.
i—1
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Fig. 7. The initial data for the electric field satisfying the SVEA.

Explicit methods tend to impose stability restrictions on the allowable step size for the
time integration. However, in the case of the AMLE (65), this is simply thiakc CAz,
which is a very mild restriction compared, for example, to the heat equation, for which
At < CAZ2. For most of our simulations, we work with about 16 points per wavelength,
which givesAz ~ % and a comparable value faxt.

Empirical convergence tests show the method to have fourth-order convergence in
time, and constants of motion are also computed numerically and are shown to be
conserved to 8 or 10 digits. A similar method is used for NLCME, though the accuracy
is far less crucial as the solutions contain far fewer oscillations and vary on a slower
timescale.

7.2. Numerical Verification

To numerically verify and explore the limits of Theorem 1, we solve both AMLE and
NLCME under the SVEA scaling and compaigith /zlig by monitoring the quantity,

Error,(t) = U¢ — +/el. (120

We do this for two values of, and check that the agreement scales appropriately as
¢ is decreased. This is done for = 3—12 andey = 6—14, and so the error should be re-
duced by half between the two runs. For the purposes of verification, we take much
larger values of the refractive index contraghan would be used in a physical experi-
ment.

In Figure 7, we show a typical initial condition for the electric fi@dThe parameters
used for this and all the numerical experiments described in this section are given in
Appendix C. The envelope in this figure is 256 wavelengths long, and it is generated
from a simulation withe = 1/64. The shape of the electric field envelope as the wave
propagates clearly illustrates the effect of the periodic medium on propagation. In Figure 8
we see that the electric field envelope (computed from “full” AMLE solutions) is “two
humped” with the amplitude moving forward and backward between the humps at a faster
rate than the envelope itself moves forward. In the same figure, we plot the location of
the maximum of the electric field, and it becomes clear that the electric field maximum
moves forward unsteadily, interrupted by a sequence of backward jumps. Also plotted
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Fig. 8. (Left) The motion of the electric field by reflection and nonlinear regrouping. Between
(a) and (c) the envelope moves forward, between (c) and (e) it is reflected backwards, and at
(f) it has begun propagating forward again. (Right) The location of the maximuEn(sélid

line) and the location of the energy density maximum (dashed line) as a function of time,
showing the effect of reflection off the grating (computed using the full AMLE system).

in this figure is the location of the energy density maximtfrahich propagates more
smoothly, since the contribution from the different fields is averaged.

Figure 9 shows the location of the electric field envelope at the beginning, middle, and
end of the computed evolution period. This figure shows both the envelope computed
from the AMLE and also the approximate envelope computed using the NLCME. To
the “eyeball metric,” the agreement appears to be quite close. More quantitatively, the
success of this procedure is measured by an error-scaling factor given, for any norm,

|[Error||(Te)

Error Scaling Factoe log, |Error; ||(Tg)'
Then the numerics verify the asymptotic procedure if the scaling factor is equal to
one. Figures 10 and 11 show that, computetiinthe error scales in agreement with
Theorem 1, but that thie> error is reduced by a factor of 2A general scaling argument
shows this is reasonable. Consider a functiofz) and let f.(z) = g3 f (¢2); then

| fello = ell f I, while || fo |l = g3 | |l It appears that using* estimates to control

L estimates has cost us half a powet d@f our approximation of the errdr®.

7.3. Very Long Time Behavior

The error estimates of Theorem 1 tell us that the solution constructed from the NLCME
and the full solution to AMLE should agree for times on the ordesdf As a practical
estimate, this may cause us some concern, as the width of the solitary wave&isaisp

so that, on these timescales, the distance of propagation is the same order of magnitude
as the width of the solution. It is therefore of interest to run our simulations for long
times to see if the NLCME continues to provide a good approximation beyond what we
have proven, or if the approximation breaks down completely.

12 The energy density is the integrand on the left-hand side of equation (78).
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Electric Field Envelope
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Fig. 9. The envelope of the electric field at the beginning, middle, and end
of the computed evolution. Computations of both the AMLE envelope and its
NLCME approximation are shown.

We run the simulation witle = 1/32 and withwy = 4, allowing the evolution to
continue tat = 12000, which is certainly larger thad(s~1). By this time, theL2 norm
of the error is similar to the 2 norm of the field itself and has stopped growing. Figure 12a
shows that the envelopes of the full solution and the approximation no longer agree, but
that they lie in approximately the same location. In Figure 12b, we see a blowup of the
electric field and its approximation via the NLCME, which shows that the two solutions
are completely out of phase with each other, so that pointwise estimates will not show
any agreement between the solution and the approximation. Figure 12c, however, shows
that the energy density of the full solution and the approximation continue to match
very well. The solution has propagated about twenty times its own width (full width at
half maximum or FWHM), and the centers of the two energy density plots are separated
by about one-fifth of a FWHM. This is encouraging, as it suggests that, although the
estimates of Theorem 1 no longer hold, the approximation and the full solution have
basically remained together.

Although the description via the NLCME has broken down in the above discussion,
the electric field has maintained the basic structure of a slowly modulated plane wave.
Eventually, this very structure will break down and the solitary wave may itself break
apart. This is shown in Figure 13 where a solitary wave, moving to the right, steepens at
its trailing end and then begins to break up, while falling behind the AMLE envelope. In
this figure, the parameters are as in Figure 12, exceptihat 1; this has the effect of
decreasing the number of oscillations contained within the FWHM of the envelope from
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L2 Error Scaling
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Fig. 10.Scaling of the error in.2 as a function of the scaled time.

60 to 10, so that the separation of scales is much less pronounced. This much narrower
envelope breaks up much faster than the solutions shown in previous plots. Although we
have no precise measurement of this breakup time, it appears to happen on a timescale
t ~ O(?).

8. Summary and Discussion

In this paper we considered the propagation of high intensity light through a one-
dimensional periodic structure. This was modeled by the anharmonic Maxwell Lorentz
equations (AMLE), which incorporate the effects of material dispersion due to finite time
response of the polarization field, photonic band dispersion due to the periodic structure,
and nonlinearity (intensity effects). We first gave a detailed discussion of how these effects
act individually and in various combinations, while also providing some numerical illus-
trations. We next considered AMLE solutions with spatially localized initial conditions,
nearly monochromatic at the Bragg resonant carrier frequency and such that the effects of
dispersion and nonlinearity are balanced. We proved that, over timescales of interest, the
backward and forward propagating field envelopes satisfy nonlinear coupled mode equa-
tions (NLCME), which we derived from AMLE using multiple scale analysis. We also
derived rigorous bounds on the deviation of the NLCME solutions from those of the orig-
inal Maxwell-Lorentz model. Theorem 1, which describes this, is the main mathematical



Nonlinear Light Propagation in One-Dimensional Media 157

L* error

221 B

181 q

16

14 4

12 q

0.8 b

0.6 B

0.4 L 1 I I I |
0 5 10 15 20 25 30

Ts’ Te/2

Fig. 11.Scaling of the error in.> as a function of the scaled time.

result of the paper. We demonstrated its validity and probed its limitations via numerical
simulation, as well as verifying that the ordering assumptions assumed in our analysis are
consistent with the physical parameter magnitudes characteristic of experimental studies.

Two directions of great interest are the study of nonlinear phenomena in multidimen-
sional photonic structures [3] and the extension of the present analysis to the case of
more general inhomogeneous structures. The multiple scale techniques and the analysis
used to obtain Theorem 1 can be applied to more general structures, e.g., periodic struc-
tures defined by a general Fourier series, index variations which are slow modulations of
those considered, and “deep gratings.” In the case of deep gratings, where the variation
of the refractive index is not small, this requires the use of a multiscale expansion ansatz
describing the slow modulation of Floquet-Bloch waves [10], rather than the plane waves
we have used in the case of a system that is nearly translation-invarant in

Anumber ofissues arose in our study which we presently discuss and raise as questions
meriting further investigation:

(i) Numerical simulations suggest that NLCME continues to acceptably predict the
location of the field energy on timescales for which the estimates used in proving
Theorem 1 break down. Figure 12 shows that the coupled mode theory fails to
predict the location of the individual peaks of the carrier wave while continuing
to predict the location of the energy. It would be of interest to investigate whether
there exists a weaker, more general framework, in which the AMLE solution is well
described by the NLCME solution.



158 R. H. Goodman, M. I. Weinstein, P. J. Holmes

0.3 T T T T T =T T T

02t
(@)

0.1

0 L .
—-1800 -1600 -1400

-1200 —-1000 —-800 -600 -400 -200 0

0.1

0.05
()
-0.05
-0.1

-950 -945 -940 -935 -930 -925 -920 -915 -910 -905 -900

T T T T T T T T
0.04 b

0.03f
(©)

0.02

0.01f

0 : =
-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0

Fig. 12. The full (solid) and approximate (dashed) solution at 12000 for(a) the electric
field envelope(b) the full electric field, blown up from the box in (a), showing that the two
solutions are out of phase, a() the energy density, which agrees quite well.

(i) The very long time simulations described in Section 7 indicate a degradation of
the gap soliton due to wave steepening and the radiation of energy away from the
soliton core. It would be of interest to derive higher order model equations that
describe these phenomena and agree with the full solutions to AMLE on longer
timescales.

While it is possible to find longer-time envelope equations by starting with
smaller (D(¢)) initial conditions and introducing a third timescalg = t, our
primary interest is to investigate the validity of the NLCME system already in wide
use by experimentalists. Rigorous results for such longer-time systems in other
contexts are given in [23], [31].

(iif) For the one-dimensional nondispersive model with nonlinearity, we have seen that
wave steepening and shock formation occurs. This situation appears to persist in the
presence of periodic structure. It would be of interest to extend the Lax-Klainerman-
Majda theory [28] described in Section 3.4 to include the case of equations with
periodic or more general inhomogeneous variable coefficient terms. As noted, for
(localized) SVEA initial conditions with carrier frequency in Bragg resonance with
the medium, photonic band dispersion is significantly stronger than material dis-
persion and the gap solitons arise due to a balance between the former and the
Kerr nonlinearity (indeed, the NLCME may be obtained as a Galerkin truncation
of the infinite system of equations (39)) derived in this case. Inclusion of material
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Fig. 13. The envelope of the solution with very few oscillations steepening and then breaking
up.

dispersiongg < oo in AMLE) regularizes shocks; see Theorem 3. Are there subtle
regularizing effects provided by photonic band dispersion alone?

(iv) In the full three-dimensional waveguide problem, one must also take into account
waveguide/mode dispersion and polarization mode dispersion. In this case there is
an interplay between the mechanisms of diffractive spreading (regularizing), geo-
metric confinement of the field (tending to one-dimensionalize and therefore singu-
larize the propagation), modal dispersion (which takes higher harmonics off reso-
nance and therefore possibly regularizes), and nonlinearity. The interplay of all these
effects remains unclear. It would be interesting to extend the results of [12], [23],
[31], [40], [39] to situations with periodicity and nontrivial transverse geometry.

A. Dimensionless Quantities

In this appendix, we nondimensionalize AMLE and isolate the key nondimensional pa-
rameters. We then defidiéspersion lengthandnonlinear lengttwhose balance specifies

the conditions under which a soliton is expected to form. Finally, using the experimental
parameters of Eggleton et al. [15], we calculate our dimensionless quantities and verify
the applicability of AMLE.
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We begin with the AMLE system written using dimensional variables and derive a
nondimensional version of AMLE. We then use physical parameter values gleaned from
the literature in order to find approximate sizes of the nondimensional parameters. Primed
variables represent nondimensional quantities and unprimed variables dimensional ones.
We use the standard notatiok][to represent the units o so thatX = [ X] X’ for any
variableX.

The AMLE written in dimensional variables are

wod D = 3,B, B = 3,E, (121a)
D = ¢FE + P, (121b)
@5 202P + (1 — 2Ancog2kp2))P — $P3 = eox VE. (121c)

We begin, as usual, by eliminating the magnetic figltb obtain
nod2D = 32E. (122

We now introduce nondimensional (primed) variables,

t="Tt, z= 27, (123a)
E=¢F, P=elP, D = €D/, (123b)
~ kB - wo
ks = — = — 12

B= 2 o T (123c)

where the calligraphic letters represent dimensional magnitudes. To explicitly display
the expected scaling, we write

e

An = and = —"—,
e = at)?

(124

wherev andg, along withy P, are dimensionless arfd(1), and the fields in (123b) are
also allO(1).

Substituting these new variables into equations (122), (121b), and (121c) and elimi-
nating common factors yields

L 32D = L92E/, (125a)
D'=FE + P, (125b)
L 02P’ 4+ [1+ 2ev cO2kpZ)] P’ — epP"° = x VE'. (125c)
Letting
zZ

we have that (125a) becomes
32D' = d2E'. 127

The system (127), (125b), and (125c) comprise the dimensionless AMLE system; see
also (6).
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A.1. The Material Frequencyo and the Electric Susceptibility ©

At low intensities, the relation betwedhandE is given by the_orentzmodel:

1
—Pi+P=cx"E. (128

@o
In the time-frequency domain, this implies
A @ .
P(w) = co—5—— E(), (129
wy— w
wheref (0) = [e 7 f () dt.
In a general linear setting, we have

P(@) = xP(@)E, (130
where the (frequency dependent) index of refractiof), is related tox ¥ by the
relation

(@) = 14 xP (). (13D

A standard model fog @ (w) in the optics literature [2] is the Sellmeier model, which
approximateg Y () by a function of the form

N
xP@ =€)y
i=1

wherew;, the model resonant frequencies of the medium,;qﬂbare determined by
a data fit. For silica glass, a good fit with experimental data is found Wita 3. The
Lorentz model corresponds t§ = 1, so we take the term in thd = 3 expansion
corresponding to that frequenay;, which is closest to the input carrier frequency.
Below, we use this to determine the valuesogfand x ¥ in the Lorentz model.

2.
Wi Xi
of

(132

— w2’

A.2. The Electric Field Strength

Most optical physics literature reports field strength in terms of the interisiffhe
electric field strength is given in terms of the intensity by [2]:

2|
&=
€oCn

(133

wheren is the (nondimensional) refractive index, related to the linear susceptilility,
by (131).

A.3. The Coefficient of Nonlinearityg

We consider the instantaneous limit of the basic equation, with no grating\ nes O:

P—¢P%=cxE. (134
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We may invert the above relation for smalland write

P=co(xVE+x®E3+..), (135
where
©)

= X

P -
Then the nondimensional quantity is given by

52x(3)
= e 430

The third-order susceptibility ® is related to the nonlinear refractive inde,or nj,
by the relation ([2], page 40, equation (2.3.13) and page 582, equation (B.2)):

@ _ 8y _ 4eocn®n)

X 3 = 3 (139

Finally, sincel = 3eocné? ([2], page 582, equation (B.1)), we have

|
8inn,

? = 35m) (39

A.4. Parameter Values of Physical Experiments

To form the anharmonic oscillator equation for the polarization, we need four constants:
the susceptibilityy @, the nondimensional frequenay, the index modulatiorn, and
the cubic coefficiend.

The Susceptibility x ¥ and the Nondimensional Frequencywg

First we must find the characteristic timescdle Typical experiments are performed
using laser light with wavelength of approximately one micron. We define the charac-
teristic length and time so th&g ~ 1, but for convenience in the paper referkig.
Accordingly, we take

1x 10
z =2 ma~16x10"m, (140)
21
z —16
T = Z~53x107% (141)

Next, we must find the dimensional frequency of the oscillator. For silica glass, one has
(2], page 7)

&0 = 1.6 x 10'%s71, (142)
xP = 41 (143)

The nondimensional resonant frequency is then given by

wo = o7 ~ 8.6. (144
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The Index Modulation An = ¢v
Eggleton et al. [15] give an approximate value of

An~3x 1074 (145

The Nondimensional Nonlinearity Coefficient,¢
For this we need the intensity, which in [13] is given by

| ~ 2 x 10" W/m?, (146)
and the nonlinear refractive index ([2], pages 582-583),
nh = 2.5x 1022 m¥W. (147
The linear refractive index is obtained from (131) and (143):
n~12 (148
From (139), we have
ep ~2x 1074, (149
Therefore, by choosing the small parameter
e =101 (150
we arrive at
¢ ~2 (151
and
v AR 3. (152

Therefore, the approximate nondimensional polarization equation (125c) may be written:
O102)32P" +[1 + 0104 cos2ksZ)] P’ + O(10H P> = O(HE. (153

We see that the nonlinearity and the dimensionless grating effectively balance each
other. This justifies oue-dependent scaling of the dimensionless AMLE system and
the solution. We note that this scaling assumes ®aP’, andD’ areO(1) quantities;
see (123b). In the main text, we take P, and D to be O(/¢), thereby effectively
introducing the factor of multiplying ¢ in (125c) which is absent from (6c¢).

Note also, that whilex~2, the coefficient 0bZP’, is smalll, it is roughly 100 times
the grating strength, i.esw3 ~ 10-2. The significance of this can be seen as follows.
Were we to expand the electric field, as in Section 4, to all orderswe would have

o0
E%ﬁZsiEi.
i=0

Inspection of the hierarchy of equations f&rreveals that

Ei ~ a)QZI.

This suggests theE*® is well approximated by% Eo providedswo? < 1. The experi-
mental regime discussed satisfies this criterion.
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B. Calculation of the Dispersion and Nonlinear Lengths

In the design of an experiment to observe gap solitons, the matter dbtimation
lengthis important. Laser light injected into an optical fiber will have an approximately
Gaussian profile. One is therefore interested in the distance over which one can expect
a soliton to form. Solitons are understood to form due to a balance of dispersive and
nonlinear effects. Dispersion acts by broadening a pulse and radiating high frequency
components away, while a Kerr (focusing) nonlinearity acts to concentrate energy. We
presently give a heuristic discussion of this balance.

Material Dispersion Length, Zmaterial
Recall that the (material) dispersion relation associated with the finite time response of
the medium to the field is

k? = wZL(w%)Z. (154

The dispersion of a wavepacket, with frequency content concentrated in an interval of
width ¢ aboutwg, is governed by Fourier integrals of the form

l(z,t) = / g k@7—at) ¢ (M) do. (155

&

where f is a localized function of frequency. Expansiorkgdv) aboutw = wg yields

| (Z,, t/) ~ ei (kgZ —wpt’) / ei(wfwo)(k’(wg)z’fwgt’)ei kH((;B) (w—wg)?t’ f <w - wB) dow
&

K’

~ g (keZ—wat) / g 1K @e)e2)-wp(et) g “FEHAED) £ () iy

O(K'(wp)e?Z)" %), 7 = O 2. (156)

Thus, a localized pulse disperses due to the finite time response of the medium over
a dimensionless distanezeof orders—2k”(wg) . Noting thatk” (wg) = (’)(a)gz), we
have

o, material = O(e 2K (wp) ™) = O(w3e ) wavelengths

Using the physical parameter values discussed in Appendix A, we find that

Zp material ~ 7 km.

Photonic Band Dispersion Lengths gang
Linear dispersion due to the periodic structure (photonic band dispersion) is governed
by the linear coupled mode equations (27). The dispersion of the wave envelope is then
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expressed in terms of generalized Fourier superpositions of Floquet-Bloch waves:
1@t ~ [E@.tika+:Q f(@QdQ
~ @i (ksZ—wst’) e—iQ(O)st’ /eiQ(si—Q’(O)et’) e—‘?Q”(O)Qzet’ f(Q) dQ

= O(Q'(O)e)72), =0, (157)
where Q(Q) is given by the dispersion relation (29) which disperses to zero over a
distance
" -1 K
Zp pand= O([eQ"(0)] ) = O <g) wavelengths
Physically, this gives

Zp pand~ 1 cm,
which is six orders of magnitude shorter tt&ynateriat

Nonlinear Length, g

A measure of the distan@g_, over which nonlinear effects play a role, can be obtained
by considering the coupled mode equations in the absence of disperdityddhotes
the electric field amplitude, then we have

(31 £ vgdz)E = —iT|EJ?E, (158
with solutionE = e T€*Z-wT g = gl€*Z—wst) ¢ for some constaréf. Therefore,
zv = (eT) 7t ~ (e¢) ! wavelengths

which gives
Zne &~ 1lcm
which balances the band dispersion lenzgiang

Balance of Nonlinearity and Dispersion
Note thatzp materialis longer tharep pang by a factor of ordee—1; for frequencies near
the band edge, the dispersion due to the periodic structure is much stronger than material
dispersion.

Therefore, in order to achieve a balance between dispersive and nonlinear effects over
a short distance, we must equaig,angandzy, . This gives

K 1
;’\’g or K¢N8. (159)

By (139), this gives the intensity, ensuring a balance of appearance of nonlinear effects
within a (photonic band) dispersion leng#p, pang

3(xD)%
8 nnbk
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which works out to
| = 010" Win?,
in line with the experiments described in [13].

C. Computational Details

C.1. Computations in Sections 3.4 and 3.5

All figures in these sections are initialized as a single normal mode of wavenumber
k = 1 of the linearized form of the AMLE, 6, witk = 0 and magnitude/s. We
should note that the numerical simulations use very large valuesompared to the
physically appropriate value = O(10~%) derived in Appendix A because performing
the simulations for AMLE with such smadlwould be computationally infeasible. The
other parameters are given by

n—1=1 and ¢ =1

For Figure 4, we use a frequency®o§ = 1000 to illustrate the behavior near the limit

of instantaneous polarization before the onset of a shock. In Figures 5 and 6, we use
wp = 50 andwy = 100, respectively, to show the role of dispersion in regularizing the
shock.

C.2. Computations in Section 7

All calculations in this section are performed with the following parameter values:

1
& = —,
32
ke = 1,
= 1.19,
¢ =1
v =1

In Figures 7, 9, and 12, a material frequency of
wo =4

is used, while in Figure 13, we use the value
wo=1.

In all calculations, the coefficients of the NLCME are derived from the above parameters,
and, as initial conditions, we construct a solution from the gap soliton with parameters

v=.9 and §=.9.

To create the graphs in Figures 10 and 11, we also compute the evolutions with all
parameters as above except with: 6%1.
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