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Summary. We consider the nonlinear propagation of light in an optical fiber waveguide
as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is
assumed to have an index of refraction that varies periodically along its length. The wave-
length of light is selected to be in resonance with the periodic structure (Bragg resonance).
The AMLE system considered incorporates the effects of noninstantaneous response of
the medium to the electromagnetic field (chromatic or material dispersion), the periodic
structure (photonic band dispersion), and nonlinearity. We present a detailed discussion
of the role of these effects individually and in concert. We derive the nonlinear coupled
mode equations (NLCME) that govern the envelope of the coupled backward and forward
components of the electromagnetic field. We prove the validity of the NLCME descrip-
tion and give explicit estimates for the deviation of the approximation given by NLCME
from theexactdynamics, governed by AMLE. NLCME is known to have gap soliton
states. A consequence of our results is the existence of very long-lived gap soliton states
of AMLE. We present numerical simulations that validate as well as illustrate the limits
of the theory. Finally, we verify that the assumptions of our model apply to the parameter
regimes explored in recent physical experiments in which gap solitons were observed.

1. Introduction

There is a great deal of current interest in nonlinear optical phenomena in periodic
structures. This interest has been fueled by advances in fabrication methods for periodic
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media and in their potential for use as components in all-optical communication systems
and computers. The potential for applications is due to the rich variety of phenom-
ena that result from the interactions of sufficiently intense (nonlinear) electromagnetic
fields with the underlying (linear) dispersion characteristics of the periodic structure
[47]. The reason one may envision the use of nonlinear periodic structures in opti-
cal devices stems from the observation that one can achieve very strong dispersion of
a light pulse over very short distances by arranging the wavelength of light and pe-
riod of the medium to be appropriately resonant. At sufficiently high intensities, one
then expects a balance between nonlinear and dispersive effects over short distances,
thus giving rise to a rich class of phenomena in structures of small physical dimen-
sions.

This paper is motivated by experiments and theory on nonlinear wave propagation in
one-dimensional periodic structures. Our goal is to validate the nonlinear coupled mode
equations (NLCME), a model commonly used to describe this situation, and to clarify the
roles played by the various physical mechanisms. The experiments involve the propaga-
tion of intense light in an optical fiber waveguide whose core has a periodically varying
index of refraction along the length of the fiber, afiber grating [25]. Experimental-
ists have observed the formation ofgap solitons, solitary-wave–like localized structures
whose time-frequency parameters lie in the photonic band-gap associated with the back-
ground periodic structure. These are of potential interest for use in all optical storage
devices, since they can, in principle, travel at arbitrarily low speeds. Theoretical work
on nonlinear propagation in periodic structures goes back to work of Winful et al. [44],
[45], and Chen and Mills [8]. Explicit gap soliton solutions were derived in the context
of a slowly varying envelope theory by Christodoulides and Joseph [9] and in a more
general form by Aceves and Wabnitz [1]. For surveys on aspects related to this paper, see
de Sterke and Sipe [11], Brown and Eggleton [7], and Kurizki et al. [17]. Experiments
demonstrating the existence of gap solitons have been performed by Eggleton, Slusher,
and collaborators [13], [14], [15], and by Broderick and his collaborators [6], [34]. In
two and three dimensions, Ak¨ozbek and John have formally derived envelope equations
and examined their solitary waves numerically [3].

In the remainder of this section, we give a brief overview of the underlying physics and
modeling assumptions. We also introduce the analytical and numerical results developed
in this article.

Electromagnetic wave propagation in a dielectric medium is described by Maxwell’s
equations together with an appropriate constitutive relation describing how electromag-
netic waves interact with matter. An optical fiber has a high indexcore and a slightly
lower indexcladding. This index configuration confines rays to the core (total internal
reflection) or, from the wave perspective, the index profile provides a potential well with
a ground state (core mode) having most of its energy confined to the core. In the regimes
that interest us here, to a very good approximation the energy distribution has a fixed
transverse structure given by the core mode, and one may think of the transverse core
mode amplitude as varying with timet and distance along the waveguide,z. In addition
to this geometric constraint, we incorporate the following effects:

(i) Noninstantaneous response of the medium to the field: The polarization,P, is related
to the electric field,E, via an anharmonic Lorentz oscillator model.
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Fig. 1.A schematic drawing of an optical fiber with periodic refractive index variation.

(ii) Periodicity of the medium: Spatial periodicity of the medium is built in by allowing
the coefficients of the anharmonic Lorentz oscillator to vary periodically in space.
A schematic of the physical system is shown in Figure 1.

(iii) Nonlinear effects at appropriate intensities: The implied relation betweenP and
E is such that regions of higher intensity|E|2 have higher refractive index. This
is a so-called focusing (Kerr) nonlinearity. The localized region of higher intensity
effectively creates an attractive potential well.

The effects of noninstantaneous response and spatial periodicity each give rise to
dispersion, the property that waves of different wavelengths travel at different speeds.
The type of dispersion due to (i) is calledchromatic or material dispersionand that arising
due to effect (ii) is calledphotonic band dispersion. This results from interference effects
arising from reflection and transmission in the periodic structure.

A model incorporating the above geometric constraints and physical effects is a
variant of the Anharmonic Maxwell-Lorentz system [5], [36], [24], which incorporates
the spatial periodicity. This system is displayed in (6), and we shall refer to it below as
AMLE.1

While in a bare (homogeneous, nongrated) optical fiber, light injected at one end
of the waveguide will propagate with little back-scatter, significant back-scattering will
occur in the presence of a periodic refractive index. This effect is most pronounced
when the wavelength of light is roughly twice the grating period, 2d, the case ofBragg
resonance. In this case there is strong coupling between backward and forward waves.
We will assume that the variation of the index of refraction about its mean is small and is
denoted by a parameterε. In terms of this parameter, we consider the following scaling
regime:

• amplitude of the field∼ O(
√

ε), and
• initial spectral support of the pulse is concentrated in a wavenumber range of width
O(ε) about±kB ≡ ±π /d.

Therefore, the spatial structure of the fieldsE andP may be viewed as functions of the
form

√
εA(εx)eikBx, whereA(y) is a localized function ofy. We shall refer to this as

1 In the nonlinear optics literature, the relation between polarizationP and electric fieldE is often taken to

have the form:P =
∫ t

−∞ χ(t−τ)E(τ )dτ +· · · . The class of models we have chosen gives the same envelope
equation, NLCME, in the scaling regime considered but has the added feature that it conserves energy. Energy
estimates are central to our proof of the validity of NLCME: Theorem 1.
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Fig. 2. A schematic of a wave packet under the SVEA, with envelope with
width ε−1, amplitude

√
ε, carrier wavelength 2d, and a plot of the index of

refraction variation with variation of sizeε and periodd.

theslowly varying envelope approximation(SVEA). A schematic of this scaling ansatz
is shown in Figure 2.

Under these assumptions,nonlinear coupled mode equations(NLCME, see equations
10) can be derived that govern the forwardE+ and backwardE− propagating electric
field wave envelopes on timescales of orderε−1. Thus, in this regime, the fine scale
grating oscillations are effectively averaged and the original mathematical description
in terms of a nonlinear partial differential equation with spatially periodic coefficients is
replaced by a constant coefficient dispersive nonlinear partial differential equation.

The main results of this paper are as follows:

Characterization of Phenomena: The formation of long-lived coherent structures (gap
solitons) is the result of a balance between the effects of dispersion and nonlinearity.2

The energy in a wave packet, with frequency content localized about the Bragg res-
onant frequency, resolves into backward and forward propagating waves. If the field
amplitude is appropriately large relative to the the amplitude of periodic variations in
the medium, then wave energy does not disperse and is localized in space. Nonlinearity
generates ever higher harmonics which is manifested in wave steepening and apparent
carrier shock formation; see Sections 3.4 and 3.6. However, in the presence of material
dispersion due to finite time response, a stable balance between dispersion and non-
linearity is achieved; no shocks form, and one has long-lived stable gap solitons (see
Section 2.2, Theorem 1, and the corollary of Section 3.7). We also verify (Appendix A)

2 In contrast to the case of bare fiber, for which this balance is achieved over lengths of optical fiber on the
order of tens of kilometers, for the periodic structures and intensities used in the above cited experiments, this
balance occurs on a length scale of centimeters; see Appendix B.
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that parameter ranges corresponding to experiments are described by our model and
theorem.

Analytical—Theorem 1: We prove that solutions to the initial value problem for AMLE
with finite energy and nearly monochromatic initial conditions, as above, give rise to
solutions that are well-approximated, on appropriate timescales (O(ε−1)) by a super-
position of amplitude-modulated backward and forward propagating plane waves. The
backward and forward amplitudes satisfy NLCME. Further, we estimate the deviation
of the NLCME approximation to the AMLE solution. An important class of solutions
of NLCME are so-calledgap solitons.3 These are spatially localized nonlinear bound
states [1] that have been observed experimentally. Our results imply the existence of
gap soliton wave packets for AMLE on timescalesO(ε−1), see Section 6. Our method
follows previous rigorous studies of the validity of solutions to envelope equations in
approximating oscillatory, nearly monochromatic solutions to evolution PDEs in one
space dimension; see, for example, Kirrman, Schneider, and Mielke [27] and Pierce
and Wayne [37]. A related method presented in the context of dissipative equations is
given by van Harten [41]. Important extensions of such methods have been developed
in Donnat and Rauch [12], Joly, Metivier, and Rauch [23], Lannes [31], and Schochet
[39], [40] where multidimensional and multiphase problems are treated. These papers
do not treat the resonant interactions of multiphase waves with periodic media, although
the formulation of [12], e.g., can easily be extended to deal with the present one-space-
dimensional problem. Here, however, we provide a self-contained, elementary treatment
of the one-dimensional problem. We also wish to note a recent general paper of Babin
and Figotin [4] on wave interactions in periodic media.

Numerical Simulations: We numerically simulate AMLE and NLCME and system-
atically compare their computer-generated solutions with a view toward checking the
error estimates of Theorem 1. Initial data appropriate for Theorem 1 consists of a slow
modulation of a highly oscillatory wave. In the main numerical example presented in
Section 7, we have simulated the AMLE evolution with gap soliton wave packet initial
data. We take data with an envelope whose full width at half maximum (FWHM) mea-
sured in wavelengths of light is about 60; see Figure 7. In one run, the simulation of
AMLE took about 21

2 hours, while the corresponding simulation of NLCME took only a
few minutes on a 500 mHz Pentium III computer running Linux. The advantage is even
larger when wavepackets with more oscillations are investigated. For parameter regimes
of physical interest, it is probably infeasible to simulate the full AMLE, while it is quite
simple to simulate the NLCME. In the physical experiments [13], pulses on the the order
of 30 ps FWHM are observed,O(104) wavelengths.

In our numerical simulations, we identify three time regimes. The first is the timescale
on which the coherent structure evolves as a gap soliton plus fluctuations satisfying the

3 Here, we adopt a common usage of the termsolitonas referring to a nonlinear bound state solution or solitary
wave. The term originally and still often refers more specifically to nonlinear bound states arising in completely
integrable systems.
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estimates of Theorem 1. The second is a longer timescale on which the wave envelope
predicted by NLCME gives an accurate prediction of where the field energy is, but due
to phase drift, the norm estimates of the error in Theorem 1 fail to hold. The third is
a regime on which the wave envelope begins to steepen asymmetrically and radiate
energy, leading to a decay of the gap soliton. A description of this process would require
the inclusion of higher order nonlinear wave-steepening and dispersive corrections to
NLCME.

The structure of this paper is as follows:
In Section 2.1 we introduce the anharmonic Maxwell-Lorentz model (AMLE) and in

Section 2.2 we describe and display the nonlinear coupled mode equations, discuss their
mathematical structure, and state our main theorem (Theorem 1) relating solutions of
AMLE to those of NLCME. In Section 3 we discuss the effect of the nonlinearity, periodic
structure, and material dispersion and describe the physical effects of including, exclud-
ing, and variously combining these mathematical features of the system. In Section 4 we
present a derivation of NLCME from AMLE using the method of multiple scales, and
in Section 5 we discuss existence and uniqueness results for AMLE and NLCME, some
of which are needed in Section 6, where we prove Theorem 1. In Section 7 we report
on numerical simulations and careful systematic comparison of solutions to AMLE and
NLCME. In Section 8 we present a short summary followed by a discussion of issues
meriting further investigation. The appendices contain a discussion of nondimensional-
ization and physical parameter magnitudes, and details of dimensionless values used in
the numerical simulations.

Notation and Conventions
Throughout this paper, we make use of following notation:
The symbolsC, Cj are used to represent generic constants whose dependence on

parameters is specified when of concern.
For a vector-valued functionEf (z), theL p-norm is given by

‖ Ef ‖p =
(∫ ∑

j

| f j (z)|pdz

)1/p

. (1)

Here and throughout, spatial (z) integrals are taken over−∞ < z < ∞. The spaceL p

is then the space of all functionsEf such that‖ Ef ‖p is finite.
TheL∞ norm is given by

‖ Ef ‖∞ = max
j

(
ess sup| f j (z)|

)
, (2)

with the spaceL∞ thus defined as the set of all (essentially) bounded functions.
The Hs norms may be defined as

‖ Ef ‖2Hs =
s∑

k=1

∥∥∥∥ dk

dxk
Ef
∥∥∥∥2

2

. (3)

The spaceHs is the space of all functionsEf such that‖ Ef ‖Hs is finite, that is, the space
of functions such that the function and its firsts derivatives are square-integrable.
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Finally, for a given Banach spaceX, with norm‖ · ‖X, we define

C([0, T); X)

to be the set of functionsf : t 7→ f (t) ∈ X that are continuous fort ∈ [0, T) with
values inX.

2. The AMLE and NLCME Equations

2.1. AMLE, Nondimensionalization, and Parameter Regimes

In this subsection we introduce AMLE with physical parameters and then introduce its
nondimensional form. We then discuss parameter regimes associated with the above
mentioned experiments.

We take as our basic model a one-dimensional electromagnetic system satisfying
Maxwell’s equation, with the polarization governed by an anharmonic Lorentz oscillator
model,4 henceforth referred to as the anharmonic Maxwell-Lorentz equations (AMLE)
[5], [24], [36],

µ0∂t D = ∂t B, ∂t B = ∂zE, (4a)

D ≡ ε0E + P, (4b)

ω̃−2
0 ∂2

t P +
(
1− 21n cos(2k̃Bz)

)
P − φ̃P3 = ε0χ

(1)E. (4c)

Here,E is the electric field,B is the magnetic field,P is the polarization, andD is the
electric displacement.ε0 andµ0 denote, respectively, the permitivity and permeability
of free space, andχ(1) is the linear polarizability of the medium. Recall thatε0µ0 = c−2,
wherec is the vacuum speed of light.1n measures the strength of the grating. We shall
also write

1n = εν, (5)

whereε measures the size of the index modulation andν is of order one and is introduced
in order to make explicit how the spatially periodic structure rears its head in the envelope
approximation, NLCME, to be derived below.

4 Our results and analysis apply to the generalization of this model where we takeP to be a weighted sum of
N polarizations,Pi , corresponding to different molecular excitation modes of the material:

P =
N∑

i=1

Pi ; ω̃−2
i ∂2

t Pi + (1− 21ni cos(2k̃Bz))Pi − φ̃i P3
i = ε0χ

(1)

i E.

This model can be viewed as a nonlinear generalization of the Sellmeier model (132); see [2]. With this
particular modeling of the polarization, AMLE has the important property of being an energy conserving
system. This structure gives rise toenergy estimatesthat are central to our proofs of well-posedness of AMLE
and of the validity of NLCME as an approximating envelope equation; see Sections 5 and 6.
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The spatial period of the medium isd and is expressed in terms of

k̃B = π

d
.

Since we are interested in the propagation of light with wavelength equal to the Bragg
wavelength, we set

λ = 2d,

whered denotes the period of the grating.
In Appendix A, we eliminate the magnetic fieldB from this system and nondimen-

sionalize these equations. There, nondimensional dependent variables are primed, but
here we drop primes for simplicity of notation. From (127), (125b), and (125c), we obtain

∂2
t D = ∂2

z E, (6a)

D ≡ E + P, (6b)

ω−2
0 ∂2

t P + (1− 2εν cos(2kBz))P − φP3 = (n2− 1)E. (6c)

ω0 is a dimensionless frequency, andφ is a dimensionless measure of the degree of the
nonlinearity. The limit of instantaneous polarization is achieved by taking the parameter
ω0→∞. This gives the relation

P = P(E) = (1+ 2εν cos(2kBz))E + χ(3)E3+ · · · ,
with nonlinear polarizabilityχ(3) and, in this case, equation (6) reduces to the scalar
nonlinear wave equation,

∂2
t (n2E + 2εν cos(2kBz)E + χ(3)E3) = ∂2

z E. (7)

2.2. NLCME and Main Results

The nonlinear coupled mode equations are introduced by considering slow modulations
to solutions of the anharmonic oscillator model in which the photonic structure and non-
linearity are ignored. Whenε = 0 andφ = 0, system (6) supports plane wave solutions
of the formE = E±ei (±kz−ωt), wherek = k(ω) is the dispersion relation (see Section 3)
andE± are constants. A similar statement holds forP. In the scaling regime described
in the introduction, in which nonlinear effects and spatial periodicity are allowed, and
where the carrier wave has wavenumberkB and frequencyωB = ω(kB), we seek coupled
andslowly modulatedbackward and forward plane wave solutions of the form(

Eε
NLCME

Pε
NLCME

)
∼ √ε

(
E+(Z, T)ei (kBz−ωBt) + E−(Z, T)e−i (kBz+ωBt) + c.c.

) ( 1
γB

)
(8)

wherec.c. denotes the complex conjugate of the previous expression andγB = γ (ωB)

is a constant. Here,Z andT are “slow variables,”

Z = εz, T = εt, (9)
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andE+ andE− satisfy equations of the form5

i
(
∂T E+ + vg∂Z E+

)+ κE− + 0(|E+|2+ 2|E−|2)E+ = 0, (10a)

i
(
∂T E− − vg∂Z E−

)+ κE+ + 0(|E−|2+ 2|E+|2)E− = 0. (10b)

Here,κ is a coupling parameter (proportional toν induced by the grating),vg is the
group velocity of the linear dispersive wave at frequencyωB, and0 is the nonlinear
coupling parameter (proportional toφ). The explicit expressions for these coefficients
are displayed in Section 4, during the derivation of (10); see (61).

The expression in (8) forEε and Pε is a formal approximate solution to AMLE
satisfying the “nearly monochromatic” initial condition:(

E(z, t = 0)

P(z, t = 0)

)
= √ε

(
E0+(εz)Ev+eikz+ E0−(εz)Ev−e−ikz+ c.c.

)+O(ε), (11)

whereEv± are constant two-component vectors.
We prove the following result in Section 6:

Theorem 1. Consider AMLE with a general nonlinearity satisfying Hypothesis 2 of
Section 6. There existsε0 > 0 such that for any T0 > 0 and any0 < ε ≤ ε0, the solution(

Eε

AMLE
Pε

AMLE

)
of AMLE with data (11) belonging to H3 is well approximated by a solution

of NLCME in the sense that for all t∈ [0, T0/ε] the following estimate holds:∥∥∥∥(Eε
AMLE

Pε
AMLE

)
−
(

Eε
NLCME

Pε
NLCME

)∥∥∥∥
H1

≤ C(T0;ω0, ν, n)ε. (12)

We note that due to Sobolev’s inequality,| f (x)| ≤ C‖ f ‖H1, a small error in theH1

norm ensures a small pointwise error, so that the above statement gives uniform bounds
on the error.

3. AMLE, NLCME, and Physical Phenomena

The physical phenomena modeled by AMLE and NLCME result from competition
among: (i) nonlinear effects, (ii) dispersion due to finite time response of the medium
to the field, and (iii) dispersion due to reflection and transmission in a spatially periodic
medium. This section is divided into subsections in which we study, by considering

5 Beginning with a three-dimensional Maxwell-Lorentz model in fiber geometry, it is possible to derive similar
nonlinear coupled mode equations, with one difference being that the term0(|E±|2+ 2|E∓|2)E± is replaced
by one of the form(0s|E±|2+ 20×|E∓|2)E±, where0s and0× are the nonlinear self-phase modulation and
cross-phase modulation coefficients, and depend on certain integrals of the transverse modes of the waveguide
[1], [35]. Another difference one finds is that the transverse potential, defined by the refractive index profile,
induceswaveguide or modal dispersion. Thus, a more complete description of the physics leads to corrections to
the free space dispersion relation due to material dispersion, photonic band dispersion, and modal dispersion,
as well. The multidimensional analyses of [12], [23], [31], [40], [39], which assume “almost” plane wave
solutions, do not appear to generalize (easily) to the waveguide problem.
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various choices ofω0, ε, andφ in (6), the action of these effects (terms in the equations)
individually and in concert.

3.1. Linear Spatially Homogeneous Structure with Instantaneous Response

In this case,ε = φ = 0 andω0 = ∞. Therefore,P = (n2 − 1)E and the evolution is
described by the classical wave equation,

n2∂2
t E = ∂2

z E, (13)

whose solutions are of the form

E(z, t) = e+(z− t /n)+ e−(z+ t /n), (14)

corresponding to a a superposition of left and right moving waves that propagate without
distortion.

Alternatively, we can first seek elementary plane wave solutionsE(z, t; k) = e−i ωt+ikx.

We then find thatω andk are related by the simpledispersion relationω(k) = ± k
n . Since

the phase velocity,ω(k)/k, is independent ofk, all wavelengths travel at the same speed,
and we refer to (13) asnondispersive. Standard Fourier superposition of these plane
waves yields the general solution (14).

3.2. Linear and Homogeneous Medium with Finite Time Response

In this case, we have

∂2
t (E + P) = ∂2

z E, (15a)

ω−2
0 ∂2

t P + P = (n2− 1)E. (15b)

We may still find plane wave solutions(
E0

P0

)
=
(

1
γ

)
ei (kz−ωt), (16)

wherek andω are related by thedispersion relation

k2 = ω2
n2−

(
ω
ω0

)2

1−
(

ω
ω0

)2 , (17)

and

γ = n2− 1

1−
(

ω
ω0

)2 . (18)

In the relevant parameter regimes,ω2
0 > ω2 andn2 − 1 > 0. So,γ is positive, corre-

sponding to polarization in phase with the electric field. Note that in theω0→∞ limit,
we recover the wave equation dispersion relationk = ±ωn.



Nonlinear Light Propagation in One-Dimensional Media 133

A general solution may be constructed by superposition of these plane waves using
the Fourier Transform. Using the method of stationary phase [43], one can show that
for initial data whose Fourier transform decays sufficiently rapidly, the amplitude of the
solution decays ast−

1
2 .

3.3. Linear Periodic Structure, Instantaneous Response

In this case, we takeφ = 0 andε 6= 0. We consider the case of instantaneous response,
ω0 = ∞, though the methods apply to finiteω0 as well. In this case we have the scalar
one-dimensional wave equation with spatially periodic wave speed:(

n2+ 2ε(n2− 1)ν cos(2kBz)
)
∂2

t E = ∂2
z E. (19)

In analogy with the scalar and spatially homogeneous wave equation, we seek solutions
of the formE(z, t) = e−i ωtϕ(z). This yields the Mathieu equation:

− ∂2
zϕ(z) = ω2

(
n2+ 2ε(n2− 1)ν cos(2kBz)

)
ϕ(z). (20)

We now seek solutions of (20) of the form

ϕ(z) = ei K zψ(z; K ), K ∈ [0, 2π), (21)

ψ(z+ d; K ) = ψ(z; K ), (22)

whereψ has the same periodicity as the medium. Therefore,ψ(z; K ) satisfies the bound-
ary value problem:

− (∂z+ i K )2 ψ(z; K ) = ω2
(
n2+ 2ε(n2− 1)ν cos(2kBz)

)
ψ(z; K ), (23)

ψ(z+ d; K ) = ψ(z; K ), d ≡ π

kB
. (24)

For eachK , there is a discrete set of eigen-solutions{ϕm(z; K ) : m = 1, 2, . . .} with
corresponding eigenvalues{ωm(K )2 : m = 1, 2, . . .}. As K varies over the interval
[0, 2π), the functionsω2

m(K ) sweep out spectral (photonic) bands. These bands are
separated by spectral (photonic band) gaps. The solutions

Em(z, t; K ) = e−i ωm(K )t+i K zψm(z; K ), K ∈ [0, 2π), m= 1, 2, . . . . (25)

are generalizations of plane wave solutions of the previous subsections. In contrast to
the homogeneous medium case, where the allowable set of frequencies varies over the
entire real line, in the periodic case the allowable set of frequencies varies over selected
bands. The band dispersion relations,{ωm(K ) : m = 1, 2, . . .}, play the role of the
dispersion relation,ω(K ), for the homogeneous medium (constant coefficient partial
differential equation). Since the phase velocitiesωm(K )/K are not independent ofK ,
we see that wave propagation in periodic media is dispersive. A generalization of Fourier
superposition holds, enabling one to construct the general solution to the initial value
problem for (19). A careful stationary phase analysis of this superposition formula can
be made, yielding results on the spreading and temporal decay of solutions [30].
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Thus, Floquet-Bloch theory gives a complete characterization of wave propagation
in a linear periodic medium. However, the key to understanding the detailed properties
of this propagation is a detailed knowledge of the band dispersion functions,ωm(K ).
This is a difficult problem, in general. In the case when the periodicity is given by a
small oscillation about its mean (ε small), coupled mode theory[29] can be used to
approximate the Floquet-Bloch spectral theory. This provides a satisfactory description
of the wave propagation for large, but finite, times. We illustrate this for equation (19).
The idea is that forε small, the solutionsEm(z, t; K ) should be well-approximated by
plane waves of the unperturbedε = 0 problem. Thus, we seek solutions of (19) in the
form

E = (E+(εz, εt)eikB(z−t /n) + E−(εz, εt)e−ikB(z+t /n) + c.c.
)+O(ε), (26)

and derive equations for the slowly varying functionsE+(Z, T), E−(Z, T), ensuring that
(26) is a good approximation of a solution for times,t , of orderε−1. This approximation
and error estimates are derived systematically in Sections 4 and 6 in the nonlinear context
of AMLE. In this linear setting, the equations reduce to thelinear coupled mode equations
(cf. equations (10)):

i
(
∂T E+ + vg∂Z E+

)+ κE− = 0, (27a)

i
(
∂T E− − vg∂Z E−

)+ κE+ = 0, (27b)

wherevg ≡ ω′ = n−1 is the group velocity (which happens to agree here with the phase

velocity,ω(k)/k), andκ = k(n2−1)ν

2n .
The opening of the first “photonic band gap” can be deduced from (27). Seeking

solutions to (27) of the form(
E+
E−

)
= ei (QZ−Ä(Q)T)

(
E+
E−

)
, (28)

we find

Ä2(Q) = n−2Q2+ κ2. (29)

The photonic band gap is pictured in Figure 3, which clearly shows a region of excluded
frequencies centered aroundÄ = 0. ForÄ in the gap,Q is imaginary, indicating that
frequencies in Bragg resonance with the grating cannot propagate.

Finally, combining (28) and (29) with (26) gives the following approximation to a
band edgeFloquet-Bloch generalized plane wave:

E(z, t; K )|K=kB+εQ

= E+ei [(kB−εQ)z−(ωB+εÄ(Q))t ] + E−e−i [(kB+εQ)z+(ωB+εÄ(Q))t ] +O(ε). (30)

3.4. Nonlinearity, Instantaneous Response, and No Periodic Structure

Here, we takeω0→∞ andε = 0 in (6). The equations then reduce to

∂2
t (E + P) = ∂2

z E, (31a)
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Ω= ω−ω
0

K=k−k
0
 

2κ 

Fig. 3. The dispersion relation for the linearized coupled
mode equations, showing the spectral gap.

and, for smallE,

P = P(E) = (n2− 1)E + χ(3)E3+ · · · . (31b)

These may be combined to give

∂2
t D(E) = ∂2

z E, (32a)

D(E) = n2E + χ(3)E3+ · · · . (32b)

To study this system, we first rewrite it in a more standard form. Letv ≡ K−1(E) ≡
D(E). Then, (32a) becomes∂2

t v = ∂2
zK(v). Introducing∂zu = v, we obtain after one

integration

∂2
t u = ∂zK(∂zu). (33)

Equation (33) has the form of the equation governing the vibrations of a nonlinear string,
where the electric displacement,D(E), plays the role of the strain,∂zu.6

A classical result of Lax [32] states that systems which aregenuinely nonlinearin
the sense thatK′′(0) 6= 0, or equivalentlyD′′(0) 6= 0, will develop singularities in finite
time. SinceD′′(0) = 0, the quasilinear (32a) does not satisfy the genuine nonlinearity
condition, althoughD′′′(0) 6= 0. Klainerman and Majda [28] generalized Lax’s result;
if ∂

(p+1)

E D(0) 6= 0 and the initial data is of sizeε, then singularity formation takes place
within a time interval of lengthO(ε−p).

In particular, it follows from this result that for initial data of sizeO(
√

ε) (see (8)),
u(z, t) develops a singularity in its second derivatives withinO(ε−1) time. Thus,E

6 The classical relation between tension,τ , and strain,∂zu, is derived via

K(∂zu) = ∂zu(1+ (∂zu)2)−
1
2 τ(∂zu).



136 R. H. Goodman, M. I. Weinstein, P. J. Holmes

0 1 2 3 4 5 6

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

x

E

x

Fig. 4. Evolution from sinusoidal initial conditions (solid line) to near shock
formation (dashed line, with shock location at thex) in Maxwell’s equation with
instantaneous nonlinear polarization.

remains bounded, but∂zE tends to infinity at the singularity time. This is ashocktype
singularity. Specifically, the results of [28] imply the following:

Theorem 2. Consider the quasilinear wave equation (32a) with smooth initial data
E(z, t = 0), ∂t E(z, t = 0), which are of order

√
ε. Then, there exists a finite and

positive time, T(ε) ≤ Cε−1, such that

sup
0≤t≤T(ε)

‖E(·, t)‖∞ <∞, (34)

while

lim
t↗T(ε)

‖∂zE(·, t)‖∞ + ‖∂t E(·, t)‖∞ = ∞. (35)

Such carrier shock formation in the context of nonlinear optics has been discussed by
heuristic arguments in [16], [19].

Figure 4 shows a simulation of the shocking process on a single carrier wave.7 Com-
putational details are given in Section 7, and computational parameters for this and all
subsequent numerical results are given in Appendix C.

7 This computation is actually performed on the AMLE system with a very fast material responseω0 À 1;
see Appendix C. The simulation is run to the time the shock “would have formed” in the absence of material
dispersion.
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Fig. 5.Solution of AMLE after the “shock time” with smallω0.

3.5. Nonlinearity, Finite Time Response, and No Periodic Structure

The mathematical model in this case is AMLE, (6) withε = 0. Joly, Metivier, and
Rauch [24] proved that the initial value problem for the full three-dimensional AMLE,
for some class of nonlinearities, does not develop singularities in finite time. In Section 5
we outline a proof of this result for our simpler one-dimensional model. Therefore,
material dispersion, resulting from the finite response time (ω0 < ∞), inhibits shock
formation by providing a mechanism for expelling high frequency modes away from the
steepening regions.

Numerical experiments suggest an interesting small dispersion limit asω0 tends to
infinity in (6c). Note that for 0< ω0 < ∞ the system is semilinear, but the limiting
system is quasi-linear.

Two computations with increasing values ofω0 are shown in Figures 5 and 6 at a
short time after the shock formation time in the dispersionless (ω0 = ∞) limit. As
ω0 → ∞, the number of oscillations increases and, in some weak sense, the solution
more closely approximates a weak solution to the Maxwell system with instantaneous
nonlinear polarization.

The small material dispersion (ω0 À 1) limit of AMLE is analogous to the small
dispersion limit of the Korteweg-de Vries equation (KdV),

∂t u+ u∂zu+ ε∂3
zu = 0, (36)

the equation of the free surface of an air/water interface in the regime of long waves of
small amplitude. The dispersionlessε = 0 equation is theinviscid Burgers equationand is
easily seen to develop shocks (singularities in derivatives ofu) in finite time [43]. Forε 6=
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Fig. 6.Solution of AMLE after the “shock time” withω0 twice that of Figure 5.

0, solutions of KdV do not develop singularities [26]. For initial data that give rise to shock
formation forε = 0, one observes, forε small, a scenario analogous to what we observe
for AMLE in the limit of ω0 large. KdV is an integrable Hamiltonian system that is exactly
solvable using the inverse scattering transform (IST) [18]. IST was used by Lax and Lev-
ermore [33] and by Venakides [42] to study this small dispersion limit. In particular, the
generation of oscillations is related to the dynamics of solitons. As in the case of KdV, for
AMLE one observes the generation of solitary-wave–like oscillations as a result of carrier
wave steepening. Computer simulations indicate that these solitary waves interact more
strongly and generate radiation, a manifestation of AMLE’s apparent nonintegrability.

3.6. Periodic Structure with Nonlinearity, Instantaneous Response

In this case, the electric field is governed by

∂2
t D(E, z) = ∂2

z E, (37a)

D(E, z) = (
n2+ 2εν cos(2kBz)

)
E + φE3. (37b)

The multiple scales approach implemented in Section 4 formally yields an expansion
of the form (compare with (8))

E = √ε
∑
m≥1

(
E(m)
+ (Z, T)eimkB(z−t /n) + E(m)

− (Z, T)e−imkB(z+t /n)
)
+c.c.+ ε

3
2 E1, (38)

whereE(m)
± = E(m)

± (Z, T) ≡ E(m)
± (εz, εt), m ≥ 1, satisfies a coupled system of in-

finitely many partial differential equations. This is in contrast to the caseω0 < ∞,
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where the expansion is replaced by (8) involving only thetwoamplitudesE(1)
± at leading

(O(
√

ε)) order.
The reason for this difference can be seen by examining the equation for the correction,

E1, which takes the form(
n2∂2

t − ∂2
z

)
E1 =

∑
q≥1

[ A+q (T, Z)eiq(kz−ω(k)t) + A−q (T, Z)eiq(kz+ω(k)t)]

=
∑
q≥1

[ A+q (T, Z)eiqk(z−t /n) + A−q (T, Z)eiqk(z+t /n)]. (39)

The coefficientsA±q involve the unknown amplitudesE(m)
± and their derivatives. In order

for εE1 to be smaller than the first term in the expansion ofE, it is necessary to remove
all resonances from the right-hand side. Resonances are excited by components of the
right-hand side which are plane waves of the homogeneous problem. If 0< ω0 <∞, the
unperturbed dynamics are dispersive (ω(qk) 6= qω(k)). Therefore, the contributions to
the above sum forq ≥ 2 are nonresonant, and the nonresonance condition implies cou-
pled equations forE(1)

+ andE(1)
− alone. In the case of instantaneous response (ω0 = ∞:

absence of material dispersion), all terms in the sum are resonant. Therefore, in order
to preclude secular growth, we requireA±m ≡ 0, m ≥ 1. This yields a coupled sys-
tem of infinitely many equations governing the evolution of the backward and forward
amplitudes:E(m)

± (Z, T), m≥ 1. We do not address the question of whether the approx-
imate solution generated, via (38), is a convergent series that represents an approximate
solution of Maxwell’s equation.

Indeed, the contrast we find between the dispersive (ω0 positive and finite) and nondis-
persive (ω0 = ∞) cases is consistent with the observations of the previous section
concerning shock formation and therefore the generation of high frequency harmonics.8

Consequently, the NLCME system does not describe the evolution of the wavepacket
envelope for the system without material dispersion. Although the ratio of the effects of
photonic band dispersion to material dispersion in the experiments of Eggleton, Slusher,
et al. [13], [14], [15] is of order 106, we argue that nonlinearity rapidly (on a timescale of
orderω̃−1

0 ) generates frequency content for which material dispersion is significant; see
Appendix B. As noted in Section 3.5, material dispersion regularizes the wave steepening
by propagating nonlinearly generated frequencies, which are nearly resonant, away from
a steepening front.

3.7. Periodic Structure, Nonlinearity, and Finite Time Response

In this case, we have the full AMLE equations (6). We show in Theorem 1 that, for small
amplitude waves in the SVEA regime, solutions to AMLE are well approximated by
solutions to the Nonlinear Coupled Mode Equations (NLCME).

8 Note, however, that the simulations described in the previous section are not for wavepacket initial conditions.
It is reasonable to ask whether the dispersion that comes from the photonic band structure is sufficient to
regularize shocks. Preliminary direct simulations for the nondispersive (ω0 = ∞) limit employing numerical
schemes designed to capture shock-like structures indicate that shocks very likely form in the carrier, though
theenvelopeappears to evolve smoothly (E. Kirr, in progress).
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The NLCME have a well-known class of solutions known as “gap solitons,” which
are able to propagate through the fibers at any velocity between zero and the speed of
light. We present them in the general form as derived by Aceves and Wabnitz [1]. The
solutions depend on two parameters,|v| < 1 andδ,

E+ = sαei η

√∣∣∣ κ

20

∣∣∣ 1

1
(sinδ) eisσ sech(θ − isδ/2); (40a)

E− = −αei η

√∣∣∣ κ

20

∣∣∣1 (sinδ) eisσ sech(θ + isδ/2); (40b)

where

γ = 1√
1− v2

, 1 =
(

1− v

1+ v

) 1
4

,

θ = γ κ(sinδ)(v−1
g Z − vT), σ = γ κ(cosδ)(v−1

g vZ − T),

s= sign(κ0), α =
√

2(1− v2)

3− v2
,

ei η =
(
−e2θ + e−isδ

e2θ + eisδ

) 2v

3−v2

.

Combining this family of exact solutions to NLCME with Theorem 1, we have the
following corollary:

Corollary 1. The gap solitons approximate toO(ε) a family of long-lived solutions to
the AMLE system for times ofO(ε−1).

The gap solitons solutions bear a striking resemblance to solitons of the Nonlinear
Schrödinger equation (NLS). In fact, in the limitδ ¿ 1, v ¿ 1, we may show that the
gap soliton may be written as a normal mode of linear coupled mode equations, slowly
modulated by an NLS soliton. To see this, we study the NLCME themselves under the
SVEA limit. We assumeδ small, and look for approximate solutions to (10) of the form(

E+
E−

)
≈ δA(δZ, δT, δ2T) EV ei (QZ−ÄT), (41)

where EV ei (QZ−ÄT) solves the linearized NLCME. ThenÄ± = ±
√

κ2+ v2
gQ2, and A

solves

i ∂τ A+ Ä′′(Q)

2
∂2
ζ A+ N|A|2A, (42)

with

ζ = δ(Z −Ä′(Q)T), τ = δ2T,

andN = 0

2

(
3− v2

gQ2

κ2+ v2
gQ2

)
.
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NLS has spatially localized standing wave solutions of the form

A(ζ, τ ) = ±
√

2λ

N
ei λτ sech

(√
2λ

Ä′′+(Q)
ζ

)
, (43)

and if we letQ = 0 andλ = κ
2 in this formula, then we recover exactly the leading term

in the expansion of the gap soliton forv = 0 andδ ¿ 1. De Sterke and Sipe [11] show
additionally that the first two terms in the expansion of the gap soliton for smallδ andv

correspond to theO(δ) andO(δ2) terms in the multiple scales construction of solutions
to AMLE with small wavenumberQ.

Therefore, we expect the following relationship among AMLE, NLCME, and NLS.
For δ < δ0 sufficiently small, NLCME has a solution of the type (41), whereA(ζ, τ )

satisfies NLS. The validity of NLS as an approximation to NLCME could be shown using
the methods presented in Section 6 and [27]. This solution of NLCME, generated by
NLS, gives rise to a solution of AMLE of the type (8), providedε ≤ ε(δ0) is sufficiently
small.

4. Derivation of the Nonlinear Coupled Mode Equations

In this section we use the method of multiple scales [43] to derive the nonlinear coupled
mode equations. We begin with the equation

∂2
t (E + P) = ∂2

z E. (44a)

We also specify a more general form for the nonlinear response in modeling the polar-
ization in (6c),

ω−2
0 ∂2

t P + (1− 2εν cos(2kBz))P + g(P, z) = (n2− 1)E, (44b)

where, for small values ofP,

g(P, z) = −φP3+ higher order terms. (45)

We expand the dependent variables in powers ofε,

E = ε
1
2 E0+ ε

3
2 E1+ ε

5
2 E2+ · · · , (46)

P = ε
1
2 P0+ ε

3
2 P1+ ε

5
2 P2+ · · · , (47)

and expand the derivatives in terms of slow scalesZ = εz andT = εt :

∂t → ∂t + ε∂T and ∂z→ ∂z+ ε∂Z . (48)

To derive the NLCME, it will be sufficient for us to consider the equations for the first
two terms in the expansion, which may be written

O(ε1/2): L0

(
E0

P0

)
= 0, (49)

O(ε3/2): L0

(
E1

P1

)
= −L1

(
E0

P0

)
+
(

0
2ν cos(2kBz)P0+ φP3

0

)
, (50)
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where

L0 = L0(i
−1∂t , i−1∂z) =

(
∂2

t − ∂2
z ∂2

t

1− n2 1+ ω−2
0 ∂2

t

)
, (51)

and

L1 = 2

(
∂t∂T − ∂z∂Z ∂t∂T

0 ω−2
0 ∂t∂T

)
. (52)

We now seek solutions order by order.

O(ε1/2) At this order, the solution to the linear problem is given by (16), wherek and
ω satisfy dispersion relation (17). Ask will be determined by the length scale of
the Bragg grating structure, we prefer to solve (17) forω as a function ofk:

ω2 = 1

2

(
n2ω2

0 + k2
)± 1

2

√
(n2ω2

0 + k2)2− 4ω2
0k2. (53)

Equation (53) has two roots corresponding to each choice of sign. In the limit as
ω0 → ∞, the root corresponding to the plus sign diverges to∞, while the root
corresponding to the minus sign approaches the finite valuen2ω2 = k2, as noted
in Section 3.1. We examine a pair of backward and forward propagating modes in
Bragg resonance with the fiber and having slowly varying amplitudes,(

E0

P0

)
= (E+(Z, T)ei (kBz−ωBt) + E−(Z, T)e−i (kBz+ωBt) + c.c.

) ( 1
γB

)
, (54)

where

kB = π

d
, (55)

γB = n2− 1

1− (ωB
ω0

)2
, (56)

andωB is a root of (53) for the minus sign choice.
O(ε3/2) The equation at this order is

L0

(
E1

P1

)
= −L1

(
E0

P0

)
+
(

0
2ν cos(2kBz)P0+ φP3

0

)
. (57)

Substituting in the solution to theO(ε1/2) equation, we find

L0

(
E1

P1

)
=
(

2i (kB∂Z E+ + ωB(γB + 1)∂T E+)
2i γBωB

ω2
0

∂T E+ + γBνE− + 3γ 3
Bφ(|E+|2+ 2|E−|2)E+

)
ei (kBz−ωBt)

+
(

2i (−kB∂Z E−+ωB(γB + 1)∂T E−)
2i γBωB

ω2
0

∂T E−+γBνE++3γ 3
Bφ(|E−|2+2|E+|2)E−

)
e−i (kBz+ωBt)

+
(

0
γ 3

BφE3
+

)
e3i (kBz−ωBt)
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+
(

0
3γ 3

BφE2
+E−

)
ei (kBz−3ωBt)

+
(

0
3γ 3

BφE+E2
−

)
e−i (kBz+3ωBt)

+
(

0
γ 3

BφE3
−

)
e−3i (kBz+ωBt)

+
(

0
3γ 3

BφE2
+E∗− + γBνE+

)
ei (3kBz−ωBt)

+
(

0
3γ 3

BφE2
−E∗+ + γBνE−

)
e−i (3kBz+ωBt) + c.c. (58)

Of the terms on the right-hand side of (58), only the first two are potentially resonant
and may therefore give rise to secular growth in time,t . The nonresonance condition
required to remove such resonances can be expressed as the requirement that the vector
coefficients ofei (kB−ωBt) ande−i (kBz+ωBt) both lie in the column space ofL0(ωB,±kB);
see (51). Equivalently, we require that the inner product of each of these vectors with
the vector(−L02,1,L01,1) be equal to zero. This yields the Nonlinear Coupled Mode
Equations (NLCME):

i
(
∂T E+ + vg∂Z E+

)+ κE− + 0(|E+|2+ 2|E−|2)E+ = 0, (59a)

i
(
∂T E− − vg∂Z E−

)+ κE+ + 0(|E−|2+ 2|E+|2)E− = 0. (59b)

Here

vg = ω′(kB) = k′(ωB)−1 =
kB(

ω2
B

ω2
0
− 1)

ωB

(
ω2

B

ω2
0
− (1+ γB)

) (60)

is the group velocity, and the coupling and nonlinearity parameters are

κ = ωB(n2− 1)

2

(
n2− 1+

(
1− ω2

B

ω2
0

)2
)ν, 0 = 3γ 3

Bω2
B

kB(1− ω2
B

ω2
0
)
φ. (61)

Our proof of validity of NLCME on timescales of orderε−1 requires that we solve
explicitly for E andP through orderε. We solve (58) and obtain(

E1

P1

)
=

∑
a=±1,±3

b=1,3

(
E(a,b)

1

P(a,b)
1

)
+ c.c., (62)

such that for(a, b) 6= (±1, 1),

L0

(
E(a,b)

1

P(a,b)
1

)
=
(

0
S(a,b)

)
ei (akBz−bωBt), (63)

whereS(a,b) is determined in equation (58), and for(a, b) = (±1, 1), the right-hand side
is determined by using (59) to eliminate∂T E± from the first two terms of (58). Once



144 R. H. Goodman, M. I. Weinstein, P. J. Holmes

this is done, these terms take the form of the nonnull eigenvectors ofL0 and solving
this part of the equation becomes a trivial linear algebra problem. In this way we may
represent the approximate solution using onlyE± and theirZ-derivatives, so thatL2 and
Hs estimates on solutions to the NLCME suffice for proof of the main theorem.

5. The Initial Value Problem for AMLE and NLCME

Our proof of the validity of NLCME as an approximation to AMLE requires some a
priori knowledge of the solutions of these equations. In this section we outline the theory
of the initial value problems for AMLE and NLCME and collect the necessary facts for
the proof of the main theorem.

Both AMLE and NLCME are semilinear hyperbolic systems whose initial value
problems can be expressed in the form

∂t8(t) = −i A8(t)+ J[8(t)],

8(t = 0) = 80. (64)

Here, A is a self-adjoint operator on a Hilbert spaceH and J is a nonlinear mapping
fromH to itself and80 ∈ H.

We first indicate how AMLE and NLCME can be expressed in this form and then
show how the general theory andenergy estimatescan be used to conclude the existence
of global in time solutions.

AMLE:
To write the AMLE system, (6), as a first-order system we use the variablesE, B, P

andQ ≡ ∂t P. The AMLE system then becomes

∂t E = ∂zB− Q,

∂t B = ∂zE,

∂t P = Q,

∂t Q = −ω2
0(1− 2εν cos(2kBz))P − ω2

0g(P, z)+ ω2
0(n

2− 1)E. (65)

We now write (65) in a more compact form. Let

Eu =


E
B
P
Q

 and M =


0 ∂z 0 −1
∂z 0 0 0
0 0 0 1

ω2
0(n

2− 1) 0 −ω2
0 0

. (66)

Then, the full system may be written

∂t Eu =MEu + ω2
0ê4 (2εν cos(2kBz)P − g(P, z)) , (67)

whereê4 = (0, 0, 0, 1)T . Thus,

8 = Eu, A = iM, (68)

J[8] = ω2
0ê4 (2εν cos(2kBz)P − g(P, z)) . (69)
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NLCME:
NLCME can be written in the form (64) with the definitions

8 =
(

E+
E−

)
, (70)

σ 1 =
(

0 1
1 0

)
, (71)

A = −i vg∂Z − κσ 1, (72)

J[8] = i 0

((|E+|2+ 2|E−|2
)

E+(|E−|2+ 2|E+|2
)

E−

)
. (73)

We now formulate the general initial value problem (64) as an equivalent integral
equation,

8(t) = e−i At80+
∫ t

0
e−i A(t−s) J[8(s)] ds. (74)

It is elementary to show [38] using the contraction mapping principle that in both
examples, for any initial condition80 in the Hilbert spaceH = H1, there is a maximal
time Tmax = Tmax(‖80‖H1) > 0 and a solution8(t) of (74), which is defined for
t ∈ [0, Tmax), the maximal time interval of existence. The solution8(t) ∈ H1 for each
t ∈ [0, Tmax) and the functiont 7→ ‖8(t)‖H1 is continuous fort ∈ [0, Tmax). Finally,
eitherTmax <∞ or Tmax= ∞. If Tmax <∞, then

lim
t↗Tmax

‖8(t)‖H1 = ∞, (75)

and we say that the solution8(t) blows up at timeTmax in H1. As we have seen in
Theorem 2 of Section 3, in the absence of material dispersion, solutions of the AMLE
system do develop singularities in their gradients in finite time. We claim that for both
dispersive systems AMLE and NLCME no singularities form:

Theorem 3. For initial data in H1, Tmax = ∞. That is, AMLE (under Hypothesis 1
below on the nonlinearity) and NLCME have H1 solutions that are global in time.

To prove this theorem, it suffices to show that ifT1 is an arbitrary time, then theH1

norm of any of the components of8(t) satisfies an estimate

‖8j (t)‖H1 ≤ C(T1). (76)

The constantC(T1) may depend on and even grow withT1, but must be finite for finite
values ofT1. To prove (76), we use a combination of the conservation laws associated
with AMLE and NLCME as well as direct a priori estimates on the evolution equations.
We consider the cases of AMLE and NLCME individually.

Proof of Theorem 3 for AMLE.We use the formulation for AMLE given in (67) or,
equivalently, (65). Our proof makes use of the following technical assumption on the
nonlinear term that ensures the existence of global solutions for arbitrary sizeH1 data:
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Hypothesis 1. There exists a constant C, such that for all z,

|g(P, z)| + |∂zg(P, z)| ≤ C|P|, |∂Pg(P, z)| ≤ C. (77)

The first step is to derive anenergy estimatefor AMLE. Taking the dot product of
(67) with the vector(E, B, (n2− 1)−1P, ω−2

0 (n2− 1)−1Q) yields

d

dt

1

2

∫ (
E2+ B2+ 1

n2− 1
P2+ 1

ω2
0(n

2− 1)
Q2

)
dz

= 2εν

n2− 1

∫
cos(2kBz)P Q dz− 1

n2− 1

∫
g(P, z)Q dz

≤ C
∫

(P2+ Q2) dz. (78)

The previous inequality follows from Hypothesis 1. It follows that

‖Eu(t)‖2L2 ≤ ‖Eu0‖2L2 + C1

∫ t

0
‖Eu(s)‖2L2 ds (79)

for some positive constantC1 and therefore, by Gronwall’s inequality,

‖Eu(t)‖L2 ≤ ‖Eu0‖L2 eC1t . (80)

Estimates for theL2 norm of∂zEu are obtained in a similar manner. We first differentiate
equation (67) forEu with respect toz, and then take the dot product with(∂zE, ∂zB, (n2−
1)−1∂zP, ω−2

0 (n2− 1)−1∂zQ) and obtain

d

dt

1

2

∫ (
E2

z + B2
z +

1

n2− 1
P2

z +
1

ω2
0(n

2− 1)
Q2

z

)
dz

= εν

n2− 1

∫
[2 cos(2kBz)PzQz− 4kB sin(2kBz)P Qz] dz

− 1

n2− 1

∫
∂Pg(P, z)PzQz dz− 1

n2− 1

∫
∂zg(P, z)Qz dz

≤ C
∫ (

P2+ Q2+ P2
z + Q2

z

)
dz. (81)

This, together with the aboveL2 energy estimate, can be used to conclude, by Gronwall’s
inequality,

‖Eu‖H1 ≤ ‖Eu0‖H1 eC2t . (82)

Since theH1 norm ofEu grows at worst exponentially, we conclude thatTmax= ∞. This
completes the proof ofH1 existence for solutions to AMLE.

Proof of Theorem 3 for NLCME

Proposition 1. Let EE = (E+, E−) satisfy system (59) with initial conditionsEE(0) ∈
Hs for s ≥ 1.9 Then there exists Cs = Cs(‖ EE(0)‖Hs, T) such that‖ EE(T)‖Hs ≤
Cs(‖ EE(0)‖Hs, T). Moreover, C(x1, x2)→ 0 as x1→ 0.

9 In our proof of Theorem 1, we use this result fors ≤ 3.
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Proof. It is easy to see that system (59) preserves theL2 norm. To obtain this and higher
L p bounds onE±, we multiply both sides of (59a) by|E+|2σ E∗+ and (59b) by|E−|2σ E∗−,
add them, and take the imaginary part, yielding

1

σ + 1

(
∂T (|E−|2σ+2+ |E+|2σ+2)

)+ v∂Z(|E+|2σ+2− |E−|2σ+2)

+i 0(E+E∗− + E−E∗+)(|E+|2σ − |E−|2σ ) = 0. (83)

If σ = 0, then the last term is identically zero, showing that‖ EE‖22 is conserved.10 If
σ > 0, then we may bound‖ EE‖ using Gronwall’s inequality,

d

dT
‖ EE‖2σ+2

2σ+2 ≤ c(σ + 1)‖ EE‖2σ+2
2σ+2,

‖ EE‖2σ+2
2σ+2 ≤ ‖ EE0‖2σ+2ec(σ+1)T ,

‖ EE‖2σ+2 ≤ ‖ EE0‖2σ+2ecT/2. (84)

Letting p = 2σ + 2, this is just

‖ EE‖p ≤ ‖ EE0‖pecT/2. (85)

As c is independent ofp, this estimate holds forL∞.
The L∞ bound can then be used to bound growth rates of theL p norms of∂Z E± in

terms ofT . Taking Z-derivatives of the NLCME and performing a similar calculation
with σ = 0 yields

d

dT
‖∂Z EE‖22 ≤ c‖ EE · ∂Z EE‖22

≤ c‖ EE‖2L∞‖∂Z EE‖2L2

≤ c‖ EE0‖2L∞e2cT‖∂Z EE‖2L2, (86)

so that

‖ EE‖H1 ≤ ‖ EE0‖H1ec(ecT−1). (87)

This shows that we can indeed bound the solutions of NLCME inH1 and control them
for times T = O(1), i.e., t = O( 1

ε
). Proceeding similarly, we can derive bounds in

higher Sobolev spaces, specificallyH2 norms likeecececT

, andH3 bounds likeececececT

,
thus completing the proof of Proposition 1, and hence, by the comments preceding
Theorem 3, of that theorem.

6. Validity of NLCME for Times, t , ofO(ε−1); Proof of Theorem 1

We shall work with the formulation of AMLE given in (65).
We proceed under the following hypothesis concerning the nonlinearityg(P, z) and

its derivative∂Pg(P, z) for small P:

10 Recall that‖ EE‖p
p =

∫
(|E+|p + |E−|p) d Z.
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Hypothesis 2. Assume g has partial derivative of order≤ 4 with respect to P and has
one partial derivative with respect to z that is continuous. Assume further that g(0, z) =
(∂Pg)(0, z) = (∂2

Pg)(0, z) = 0, andφ ≡ − 1
3! (∂

3
Pg)(0, z) 6= 0 and is independent of z,

and make the analogous assumptions for∂zg. Therefore, there exists a positive constant,
C, such that for all z and all P1, P2 with |P1| + |P2| sufficiently small,

|g(P1+ P2, z)− g(P1, z)| ≤ C
(|P1|2+ |P2|2

) |P2|,
|∂Pg(P1+ P2, z)− ∂Pg(P1, z)| ≤ C (|P1| + |P2|) |P2|,
|∂zg(P1+ P2, z)− ∂zg(P1, z)| ≤ C

(|P1|2+ |P2|2
) |P2|. (88)

To obtain an approximate solution of (65), we require, in addition to our approxima-
tions ofE andP, approximations toB andQ through first order inε. We use the relation
∂t B(t, z) = ∂zE(t, z) to obtain the relations

∂t B0 = ∂zE0, (89)

∂t B1 = −∂T B0+ ∂zE1+ ∂Z E0. (90)

Also, usingQ = ∂t P, we find

Q0 = ∂t P0, (91)

Q1 = ∂t P1+ ∂T P0. (92)

We may then define

Xε
app= ε

1
2 (X0+ εX1) for X = E, B, P, or Q, (93)

and write our approximate solution to (65) as

Euε
app=


Eε

app

Bε
app

Pε
app

Qε
app

. (94)

The full solution to AMLE may therefore be written as

Eu ≡ Euε
app(t, z; T, Z)+ ε ERε(t, z), (95)

where

ERε =


Rε

E
Rε

B
Rε

P
Rε

Q

 (96)

denotes the error term. To prove the main theorem, it suffices to prove that for anyT0 > 0,
ERε remains bounded of order one, in an appropriate norm, uniformly forε sufficiently
small and 0≤ t ≤ T0/ε.

We now derive the equation forERε. Viewing t, z, T, Z as independent variables, (67),
the equation forEuε can be rewritten as

∂t Eu =MEu − εN Eu+ ω2
0ê4 (2εν cos(2kBz)P − g(P, z)) , (97)
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where

N =


∂T −∂Z 0 0
−∂Z ∂T 0 0

0 0 ∂T 0
0 0 0 ∂T

 . (98)

To obtain an evolution equation forERε, we substitute (95) into (97) to obtain

∂t (Euε
app+ ε ERε) = M(Euε

app+ ε ERε)+ εN (Euε
app+ ε ERε)

+ ω2
0ê4(2εν cos(2kBz)(Pε

app+ εRε
P)− g(Pε

app+ εRε
P, z)). (99)

We may then eliminate from this two equations obtained during the multiple scales
expansion,

(∂t −M) Eu0 = 0; (100a)

(∂t −M) Eu1 = −N Eu0+ 2ω2
0ê4 cos(2kBz)P0+ ω2

0ê4φP3
0 , (100b)

to leave an equation for the evolution of the error alone

(∂t −M) ERε = −ε
3
2N Eu1+ 2νê4 cos(2kBz)(ε

3
2 P1+ εRε

P)

+ ω2
0ê4

(
−ε−1g(Pε

app+ εRε
P, z)+ ε

1
2 φP3

0

)
. (101)

To this, we add and subtractε−1ω2
0ê4g(Pε

app, z) to obtain

(∂t −M) ERε = −ε
3
2N Eu1+ 2νê4 cos(2kBz)(ε

3
2 P1+ εRε

P)

+ ε−1ω2
0ê4

(
g(Pε

app, z)− g(Pε
app+ εRε

P, z)
)

+ ω2
0ê4

(
−ε−1g(Pε

app, z)+ ε
1
2 φP3

0

)
= 2ενê4 cos(2kBz)Rε

P

+ ε−1ω2
0ê4

(
g(Pε

app, z)− g(Pε
app+ εRε

P, z)
)+ ε−1 Eρ, (102)

where

Eρ = −ε
5
2N Eu1+ ε

5
2 ω2

02ν cos(2kBz)P1+ ω2
0

(
ε

3
2 φP3

0 − g(Pε
app, z)

)
(103)

is theresidual, essentially the amount by whichuε
app fails to solve (67).

We now consider the formal size of the second and third terms on the right-hand side
of (102). SincePε

app+ εRε
P = ε

1
2 (P0 + εP1 + ε

1
2 Rε

P) andg(P, z) ∼ φP3, the second
term of (102) isO(ε). We further note that sinceEuε

app is an approximate solution through
orderε, the residualEρ is formally of orderε2 and so the third term of (102) isO(ε).
In order to control this final term, we must calculate the approximate solution including
terms formally of orderε

3
2 and also require thatE± be in the Sobolev spaceH3.

From this discussion, we expect that, for times of orderε−1, ERε will be bounded.
For convenience, we introduce a notation that makes explicit the expected size of the
residual:

εEr = ε−1 Eρ. (104)

It is then clear that in order to boundERε we will first need to boundEr .
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Proposition 2 (Estimation of the residual).Let (E+, E−) be a solution of the NLCME
system (59). Then there exists a constant c> 0 depending on k and the Sobolev norms
of E± of order up to three, but independent ofε such that for all0≤ t ≤ T0ε

−1,

‖Er ‖L∞ ≤ c ε1/2; (105)

‖Er ‖H1 ≤ c. (106)

This proposition is a simple consequence of the explicit expression forEr (defined in
terms ofEρ) given in (103), and of Proposition 1.

Proposition 3. Let(E+, E−) be a solution of the NLCME system (59). Then there exist
ε0 > 0 and C0 > 0 s.t. if 0 ≤ ε ≤ ε0, the solution of (102) satisfies‖ ERε‖H1 ≤ C0 for
all 0≤ t ≤ T0ε

−1.

These propositions imply Theorem 1.

6.1. Proof of Proposition 3: Estimates on the ErrorERε

Recall that the evolution equation forERε is given by

∂t ERε =M ERε + ê4ω
2
0

(
2εν cos(2kBz)Rε

P −
1

ε

(
g(P, z)− g(Pε

app, z)
))+ εEr . (107)

Motivated by the energy estimates used in Section 5, we introduce the weighted norms

||| ERε|||2 ≡
∫
ERε ·3 ERε dz

=
∫ ∞
−∞

(
Rε

E
2+ Rε

B
2+ Rε

P
2

n2− 1
+ Rε

Q
2

ω2
0(n

2− 1)

)
dz, (108)

||| ERε|||2H1 ≡ ||| ERε|||2+ |||∂z ERε|||2, (109)

where the weight3 is given by the matrix

3 = diag

(
1, 1,

1

n2− 1
,

1

ω2
0(n

2− 1)

)
.

These norms are clearly equivalent to the standardL2 andH1 norms.
Then we have

d

dt

1

2
||| ERε|||2 = 1

n2− 1

∫ (
2εν cos(2kBz)Rε

P

+ 1

ε
[g(Pε

app, z)− g(Pε
app+ εRε

P, z)]

)
Rε

Qdz

+ ε

∫
ERε ·3Er dz. (110)
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Similarly, differentiation of (107) with respect tozand left multiplication by(∂z ERε)T3

yields

d

dt

1

2
|||∂z ERε|||2 = εν

n2− 1

∫ (
2 cos(2kBz)∂zRε

P∂zRε
Q − 4kB sin(2kBz)Rε

P∂zRε
Q

)
dz

+ 1

ε

∫ (
∂Pg(Pε

app, z)− ∂Pg(Pε
app+ εRε

P, z)
)
∂zPε

app∂zRε
Q dz

−
∫

∂Pg(Papp+ εRε
P, z)∂zRε

P Rε
Q dz

+ 1

ε

∫ (
∂zg(Pε

app, z)− ∂zg(Pε
app+ εRε

P, z)
)
∂zRε

Q dz

+ ε

∫
∂z ERε ·3∂zEr dz. (111)

Application of Hypothesis 2, theL∞ bound on solutions of NLCME of Proposition 2,
Sobolev’s inequality11 [22], and interpolation yields

d

dt
||| ERε|||2 ≤ C1ε||| ERε|||2+ C2ε

2||| ERε|||4H1 + ε‖Er ‖L2||| ERε||| (112)

and

d

dt
|||∂z ERε|||2 ≤ C1ε||| ERε|||2H1 + C2ε

2||| ERε|||4H1 + C3ε‖∂zEr ‖L2 ||| ERε|||H1. (113)

Estimates (112) and (113) imply

d

dt
||| ERε|||2H1 ≤ C

(
ε||| ERε|||2H1 + ε2||| ERε|||4H1 + ε‖Er ‖H1 ||| ERε|||H1

)
. (114)

If ERε(0) = 0, then by equation (107),‖ ERε‖ 6= 0 for t > 0. We therefore assume
‖ ERε(0)‖ > 0. We may then letζ(t) = ||| ERε|||(t). Then (76) and theH1 bound onEr from
Proposition 2 implies

dζ

dt
≤ Cε

(
1+ ζ + εζ 3

)
. (115)

This differential inequality is easily solved, and we conclude that, for anyT0 > 0,

‖ ERε(t)‖H1 ≤ C ||| ERε(t)||| ≤ C(T0) for 0≤ t ≤ T0ε
−1. (116)

Finally, we note that, as

Eu = EuN LC M E+ ε
3
2 Eu1+ ε ERε, (117)

then

‖Eu− EuN LC M E‖H1 ≤ ε
3
2‖Eu1‖H1 + ε‖ ERε‖H1. (118)

11 ‖ f ‖2L∞ ≤ C‖ f ‖L2‖∂z f ‖L2.
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The estimates onE± guarantee that the first term on the right-hand side isO(ε), and
Proposition 3 guarantees that the second term isO(ε). Thus,

‖Eu− EuN LC M E‖H1 ≤ Cε for 0≤ t ≤ T0ε
−1. (119)

This completes the proof.

7. Numerical Demonstration—Gap Soliton Propagation and Decay

We initialize a wavepacket for AMLE with many oscillations and an envelope whose
form is constructed using the gap soliton solution to the NLCME. The gap soliton
decays exponentially away from its “center.” We perform the simulations with periodic
geometry. The period is chosen to be several gap soliton widths so that the solution
is well localized away from the artificial period ends. The gap soliton initial condition
is initialized within the central region of the domain, so that the localized structure is
essentially unaffected by the boundary and propagates as though it were on an infinite
spatial domain. In addition, we compute the evolution of a solution to the NLCME with
corresponding envelope initial conditions, and use the formulae (54), (89), and (91) to
construct approximate solutions to AMLE for comparison.

7.1. Numerical Methods

We use a “method of lines” approach, meaning that we first discretize in the spatial
dimension, yielding a set of ordinary differential equations int for the values of the
solution at the discretization points. We compute solutions to AMLE as the first-order
system given in (65). We restrict our computational domain to a finite period interval and
discretize with about 16 points per wavelength. Derivatives are computed spectrally using
discrete Fourier transforms [20]. That is, supposeF is the discrete Fourier transform,ξ

is the dual variable toz, and Ef is a vector of discrete values off . Then the approximate
derivative is given by

∂z f = (F−1i ξF
) Ef .

The spatial discretization of system (65) may now be treated numerically as a system
of ODEs. A fixed-step fourth-order explicit Runge-Kutta method is used to integrate
the resulting system in time. Recall that ann-stage explicit Runge-Kutta method for a
general evolution equation

ẏ(t) = f (y, t)

is given by [21]:

k1 = f (yk, tk),

ki = f

(
yk + ai 1t, tk +1t

i−1∑
j=1

bi, j kj

)
, for i = 2, n,

yk+1 = yk +
n∑

i=1

ci ki .
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Fig. 7.The initial data for the electric field satisfying the SVEA.

Explicit methods tend to impose stability restrictions on the allowable step size for the
time integration. However, in the case of the AMLE (65), this is simply that1t < C1z,
which is a very mild restriction compared, for example, to the heat equation, for which
1t < C1z2. For most of our simulations, we work with about 16 points per wavelength,
which gives1z≈ 1

3 and a comparable value for1t .
Empirical convergence tests show the method to have fourth-order convergence in

time, and constants of motion are also computed numerically and are shown to be
conserved to 8 or 10 digits. A similar method is used for NLCME, though the accuracy
is far less crucial as the solutions contain far fewer oscillations and vary on a slower
timescale.

7.2. Numerical Verification

To numerically verify and explore the limits of Theorem 1, we solve both AMLE and
NLCME under the SVEA scaling and compareEu with

√
εEu0 by monitoring the quantity,

Errorε(t) = Euε −√εEu0. (120)

We do this for two values ofε, and check that the agreement scales appropriately as
ε is decreased. This is done forε1 = 1

32 andε2 = 1
64, and so the error should be re-

duced by half between the two runs. For the purposes of verification, we take much
larger values of the refractive index contrastε than would be used in a physical experi-
ment.

In Figure 7, we show a typical initial condition for the electric fieldE. The parameters
used for this and all the numerical experiments described in this section are given in
Appendix C. The envelope in this figure is 256 wavelengths long, and it is generated
from a simulation withε = 1/64. The shape of the electric field envelope as the wave
propagates clearly illustrates the effect of the periodic medium on propagation. In Figure 8
we see that the electric field envelope (computed from “full” AMLE solutions) is “two
humped” with the amplitude moving forward and backward between the humps at a faster
rate than the envelope itself moves forward. In the same figure, we plot the location of
the maximum of the electric field, and it becomes clear that the electric field maximum
moves forward unsteadily, interrupted by a sequence of backward jumps. Also plotted
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Fig. 8. (Left) The motion of the electric field by reflection and nonlinear regrouping. Between
(a) and (c) the envelope moves forward, between (c) and (e) it is reflected backwards, and at
(f) it has begun propagating forward again. (Right) The location of the maximum ofE (solid
line) and the location of the energy density maximum (dashed line) as a function of time,
showing the effect of reflection off the grating (computed using the full AMLE system).

in this figure is the location of the energy density maximum,12 which propagates more
smoothly, since the contribution from the different fields is averaged.

Figure 9 shows the location of the electric field envelope at the beginning, middle, and
end of the computed evolution period. This figure shows both the envelope computed
from the AMLE and also the approximate envelope computed using the NLCME. To
the “eyeball metric,” the agreement appears to be quite close. More quantitatively, the
success of this procedure is measured by an error-scaling factor given, for any norm,

Error Scaling Factor= log2
‖Errorε‖(Tε)

‖Errorε
2
‖(Tε

2
)
.

Then the numerics verify the asymptotic procedure if the scaling factor is equal to
one. Figures 10 and 11 show that, computed inL2, the error scales in agreement with
Theorem 1, but that theL∞ error is reduced by a factor of 2

3
2 . A general scaling argument

shows this is reasonable. Consider a functionf (z) and let fε(z) = ε
3
2 f (εz); then

‖ fε‖2 = ε‖ f ‖2, while ‖ fε‖∞ = ε
3
2‖ f ‖∞. It appears that usingH1 estimates to control

L∞ estimates has cost us half a power ofε in our approximation of the errorERε.

7.3. Very Long Time Behavior

The error estimates of Theorem 1 tell us that the solution constructed from the NLCME
and the full solution to AMLE should agree for times on the order ofε−1. As a practical
estimate, this may cause us some concern, as the width of the solitary wave is alsoO(ε−1)

so that, on these timescales, the distance of propagation is the same order of magnitude
as the width of the solution. It is therefore of interest to run our simulations for long
times to see if the NLCME continues to provide a good approximation beyond what we
have proven, or if the approximation breaks down completely.

12 The energy density is the integrand on the left-hand side of equation (78).
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Fig. 9. The envelope of the electric field at the beginning, middle, and end
of the computed evolution. Computations of both the AMLE envelope and its
NLCME approximation are shown.

We run the simulation withε = 1/32 and withω0 = 4, allowing the evolution to
continue tot = 12000, which is certainly larger thanO(ε−1). By this time, theL2 norm
of the error is similar to theL2 norm of the field itself and has stopped growing. Figure 12a
shows that the envelopes of the full solution and the approximation no longer agree, but
that they lie in approximately the same location. In Figure 12b, we see a blowup of the
electric field and its approximation via the NLCME, which shows that the two solutions
are completely out of phase with each other, so that pointwise estimates will not show
any agreement between the solution and the approximation. Figure 12c, however, shows
that the energy density of the full solution and the approximation continue to match
very well. The solution has propagated about twenty times its own width (full width at
half maximum or FWHM), and the centers of the two energy density plots are separated
by about one-fifth of a FWHM. This is encouraging, as it suggests that, although the
estimates of Theorem 1 no longer hold, the approximation and the full solution have
basically remained together.

Although the description via the NLCME has broken down in the above discussion,
the electric field has maintained the basic structure of a slowly modulated plane wave.
Eventually, this very structure will break down and the solitary wave may itself break
apart. This is shown in Figure 13 where a solitary wave, moving to the right, steepens at
its trailing end and then begins to break up, while falling behind the AMLE envelope. In
this figure, the parameters are as in Figure 12, except thatω0 = 1; this has the effect of
decreasing the number of oscillations contained within the FWHM of the envelope from
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Fig. 10.Scaling of the error inL2 as a function of the scaled time.

60 to 10, so that the separation of scales is much less pronounced. This much narrower
envelope breaks up much faster than the solutions shown in previous plots. Although we
have no precise measurement of this breakup time, it appears to happen on a timescale
t ∼ O(ε−2).

8. Summary and Discussion

In this paper we considered the propagation of high intensity light through a one-
dimensional periodic structure. This was modeled by the anharmonic Maxwell Lorentz
equations (AMLE), which incorporate the effects of material dispersion due to finite time
response of the polarization field, photonic band dispersion due to the periodic structure,
and nonlinearity (intensity effects). We first gave a detailed discussion of how these effects
act individually and in various combinations, while also providing some numerical illus-
trations. We next considered AMLE solutions with spatially localized initial conditions,
nearly monochromatic at the Bragg resonant carrier frequency and such that the effects of
dispersion and nonlinearity are balanced. We proved that, over timescales of interest, the
backward and forward propagating field envelopes satisfy nonlinear coupled mode equa-
tions (NLCME), which we derived from AMLE using multiple scale analysis. We also
derived rigorous bounds on the deviation of the NLCME solutions from those of the orig-
inal Maxwell-Lorentz model. Theorem 1, which describes this, is the main mathematical



Nonlinear Light Propagation in One-Dimensional Media 157

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

L∞ error

Tε, Tε/2

Fig. 11.Scaling of the error inL∞ as a function of the scaled time.

result of the paper. We demonstrated its validity and probed its limitations via numerical
simulation, as well as verifying that the ordering assumptions assumed in our analysis are
consistent with the physical parameter magnitudes characteristic of experimental studies.

Two directions of great interest are the study of nonlinear phenomena in multidimen-
sional photonic structures [3] and the extension of the present analysis to the case of
more general inhomogeneous structures. The multiple scale techniques and the analysis
used to obtain Theorem 1 can be applied to more general structures, e.g., periodic struc-
tures defined by a general Fourier series, index variations which are slow modulations of
those considered, and “deep gratings.” In the case of deep gratings, where the variation
of the refractive index is not small, this requires the use of a multiscale expansion ansatz
describing the slow modulation of Floquet-Bloch waves [10], rather than the plane waves
we have used in the case of a system that is nearly translation-invariant inz.

A number of issues arose in our study which we presently discuss and raise as questions
meriting further investigation:

(i) Numerical simulations suggest that NLCME continues to acceptably predict the
location of the field energy on timescales for which the estimates used in proving
Theorem 1 break down. Figure 12 shows that the coupled mode theory fails to
predict the location of the individual peaks of the carrier wave while continuing
to predict the location of the energy. It would be of interest to investigate whether
there exists a weaker, more general framework, in which the AMLE solution is well
described by the NLCME solution.
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Fig. 12. The full (solid) and approximate (dashed) solution att = 12000 for(a) the electric
field envelope,(b) the full electric field, blown up from the box in (a), showing that the two
solutions are out of phase, and(c) the energy density, which agrees quite well.

(ii) The very long time simulations described in Section 7 indicate a degradation of
the gap soliton due to wave steepening and the radiation of energy away from the
soliton core. It would be of interest to derive higher order model equations that
describe these phenomena and agree with the full solutions to AMLE on longer
timescales.

While it is possible to find longer-time envelope equations by starting with
smaller (O(ε)) initial conditions and introducing a third timescaleT2 = ε2t , our
primary interest is to investigate the validity of the NLCME system already in wide
use by experimentalists. Rigorous results for such longer-time systems in other
contexts are given in [23], [31].

(iii) For the one-dimensional nondispersive model with nonlinearity, we have seen that
wave steepening and shock formation occurs. This situation appears to persist in the
presence of periodic structure. It would be of interest to extend the Lax-Klainerman-
Majda theory [28] described in Section 3.4 to include the case of equations with
periodic or more general inhomogeneous variable coefficient terms. As noted, for
(localized) SVEA initial conditions with carrier frequency in Bragg resonance with
the medium, photonic band dispersion is significantly stronger than material dis-
persion and the gap solitons arise due to a balance between the former and the
Kerr nonlinearity (indeed, the NLCME may be obtained as a Galerkin truncation
of the infinite system of equations (39)) derived in this case. Inclusion of material
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Fig. 13. The envelope of the solution with very few oscillations steepening and then breaking
up.

dispersion (ω0 <∞ in AMLE) regularizes shocks; see Theorem 3. Are there subtle
regularizing effects provided by photonic band dispersion alone?

(iv) In the full three-dimensional waveguide problem, one must also take into account
waveguide/mode dispersion and polarization mode dispersion. In this case there is
an interplay between the mechanisms of diffractive spreading (regularizing), geo-
metric confinement of the field (tending to one-dimensionalize and therefore singu-
larize the propagation), modal dispersion (which takes higher harmonics off reso-
nance and therefore possibly regularizes), and nonlinearity. The interplay of all these
effects remains unclear. It would be interesting to extend the results of [12], [23],
[31], [40], [39] to situations with periodicity and nontrivial transverse geometry.

A. Dimensionless Quantities

In this appendix, we nondimensionalize AMLE and isolate the key nondimensional pa-
rameters. We then definedispersion lengthsandnonlinear lengthwhose balance specifies
the conditions under which a soliton is expected to form. Finally, using the experimental
parameters of Eggleton et al. [15], we calculate our dimensionless quantities and verify
the applicability of AMLE.
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We begin with the AMLE system written using dimensional variables and derive a
nondimensional version of AMLE. We then use physical parameter values gleaned from
the literature in order to find approximate sizes of the nondimensional parameters. Primed
variables represent nondimensional quantities and unprimed variables dimensional ones.
We use the standard notation [X] to represent the units ofX so thatX = [X]X′ for any
variableX.

The AMLE written in dimensional variables are

µ0∂t D = ∂zB, ∂t B = ∂zE, (121a)

D ≡ ε0E + P, (121b)

ω̃−2
0 ∂2

t P + (1− 21n cos(2k̃Bz))P − φ̃P3 = ε0χ
(1)E. (121c)

We begin, as usual, by eliminating the magnetic fieldB to obtain

µ0∂
2
t D = ∂2

z E. (122)

We now introduce nondimensional (primed) variables,

t = T t ′, z= Zz′, (123a)

E = EE′, P = ε0EP′, D = ε0ED′, (123b)

k̃B = kB

Z , ω̃0 = ω0

T , (123c)

where the calligraphic letters represent dimensional magnitudes. To explicitly display
the expected scaling, we write

1n = εν and φ̃ = εφ

(ε0E)2
, (124)

whereν andφ, along withχ(1), are dimensionless andO(1), and the fields in (123b) are
also allO(1).

Substituting these new variables into equations (122), (121b), and (121c) and elimi-
nating common factors yields

µ0ε0

T 2 ∂2
t ′D
′ = 1

Z2 ∂
2
z′E
′, (125a)

D′ = E′ + P′, (125b)
1

ω0
2 ∂

2
t ′P
′ + [1+ 2εν cos(2kBz′)] P′ − εφP′3 = χ(1)E′. (125c)

Letting

T = Z
c

, (126)

we have that (125a) becomes

∂2
t ′D
′ = ∂2

z′E
′. (127)

The system (127), (125b), and (125c) comprise the dimensionless AMLE system; see
also (6).
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A.1. The Material Frequencyω̃0 and the Electric Susceptibilityχ(1)

At low intensities, the relation betweenP andE is given by theLorentzmodel:

1

ω̃2
0

Ptt + P = ε0χ
(1)E. (128)

In the time-frequency domain, this implies

P̂(ω) = ε0
ω̃2

0

ω̃2
0 − ω2

Ê(ω), (129)

where f̂ (ω) = ∫ e−i ωt f (t) dt.
In a general linear setting, we have

P̂(ω) = χ(1)(ω)Ê, (130)

where the (frequency dependent) index of refraction,n(ω), is related toχ(1) by the
relation

n2(ω) = 1+ χ(1)(ω). (131)

A standard model forχ(1)(ω) in the optics literature [2] is the Sellmeier model, which
approximatesχ(1)(ω) by a function of the form

χ(1)(ω) = ε0

N∑
i=1

ω2
i χ

(1)
i

ω2
i − ω2

, (132)

whereωi , the model resonant frequencies of the medium, andχ
(1)
i are determined by

a data fit. For silica glass, a good fit with experimental data is found withN = 3. The
Lorentz model corresponds toN = 1, so we take the term in theN = 3 expansion
corresponding to that frequency,ωi , which is closest to the input carrier frequency.
Below, we use this to determine the values ofω̃0 andχ(1) in the Lorentz model.

A.2. The Electric Field StrengthE

Most optical physics literature reports field strength in terms of the intensity,I . The
electric field strength is given in terms of the intensity by [2]:

E2 = 2I

ε0cn
, (133)

wheren is the (nondimensional) refractive index, related to the linear susceptibility,χ(1),
by (131).

A.3. The Coefficient of Nonlinearity,̃φ

We consider the instantaneous limit of the basic equation, with no grating, i.e.,1n = 0:

P − φ̃P3 = ε0χ
(1)E. (134)
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We may invert the above relation for smallE and write

P = ε0
(
χ(1)E + χ(3)E3+ · · ·) , (135)

where

φ̃ = χ(3)

ε2
0χ

(1)3 . (136)

Then the nondimensional quantity is given by

εφ = E
2χ(3)

(χ(1))3
. (137)

The third-order susceptibilityχ(3) is related to the nonlinear refractive index,n2 or nI
2,

by the relation ([2], page 40, equation (2.3.13) and page 582, equation (B.2)):

χ(3) = 8nn2

3
= 4ε0cn2nI

2

3
. (138)

Finally, sinceI = 1
2ε0cnE2 ([2], page 582, equation (B.1)), we have

εφ = 8I nnI
2

3(χ(1))3
. (139)

A.4. Parameter Values of Physical Experiments

To form the anharmonic oscillator equation for the polarization, we need four constants:
the susceptibilityχ(1), the nondimensional frequencyω0, the index modulation1n, and
the cubic coefficientφ.

The Susceptibilityχ(1) and the Nondimensional Frequencyω0

First we must find the characteristic timescaleT . Typical experiments are performed
using laser light with wavelength of approximately one micron. We define the charac-
teristic length and time so thatkB ≈ 1, but for convenience in the paper refer tokB.
Accordingly, we take

Z = 1× 10−6

2π
m≈ 1.6× 10−7m, (140)

T = Z
c
≈ 5.3× 10−16s. (141)

Next, we must find the dimensional frequency of the oscillator. For silica glass, one has
([2], page 7)

ω̃0 = 1.6× 1016s−1, (142)

χ(1) = .41. (143)

The nondimensional resonant frequency is then given by

ω0 = ω̃0T ≈ 8.6. (144)
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The Index Modulation 1n = εν

Eggleton et al. [15] give an approximate value of

1n ≈ 3× 10−4. (145)

The Nondimensional Nonlinearity Coefficient,φ
For this we need the intensity, which in [13] is given by

I ≈ 2× 1014 W/m2, (146)

and the nonlinear refractive index ([2], pages 582–583),

nI
2 = 2.5× 10−20 m2/W. (147)

The linear refractive index is obtained from (131) and (143):

n ≈ 1.2. (148)

From (139), we have

εφ ≈ 2× 10−4. (149)

Therefore, by choosing the small parameter

ε = 10−4, (150)

we arrive at

φ ≈ 2 (151)

and

ν ≈ 3. (152)

Therefore, the approximate nondimensional polarization equation (125c) may be written:

O(10−2)∂2
t ′P
′ + [1+O(10−4) cos(2kBz′)] P′ +O(10−4)P′3 = O(1)E′. (153)

We see that the nonlinearity and the dimensionless grating effectively balance each
other. This justifies ourε-dependent scaling of the dimensionless AMLE system and
the solution. We note that this scaling assumes thatE′, P′, andD′ areO(1) quantities;
see (123b). In the main text, we takeE, P, and D to beO(

√
ε), thereby effectively

introducing the factor ofε multiplying φ in (125c) which is absent from (6c).
Note also, that whileω0

−2, the coefficient of∂2
t ′P
′, is small, it is roughly 100 times

the grating strength, i.e.,εω2
0 ∼ 10−2. The significance of this can be seen as follows.

Were we to expand the electric field, as in Section 4, to all orders inε, we would have

E ≈ √ε

∞∑
i=0

εi Ei .

Inspection of the hierarchy of equations forEi reveals that

Ei ∼ ω0
2i .

This suggests thatEε is well approximated byε
1
2 E0 providedεω0

2 ¿ 1. The experi-
mental regime discussed satisfies this criterion.
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B. Calculation of the Dispersion and Nonlinear Lengths

In the design of an experiment to observe gap solitons, the matter of theformation
lengthis important. Laser light injected into an optical fiber will have an approximately
Gaussian profile. One is therefore interested in the distance over which one can expect
a soliton to form. Solitons are understood to form due to a balance of dispersive and
nonlinear effects. Dispersion acts by broadening a pulse and radiating high frequency
components away, while a Kerr (focusing) nonlinearity acts to concentrate energy. We
presently give a heuristic discussion of this balance.

Material Dispersion Length, zD,material

Recall that the (material) dispersion relation associated with the finite time response of
the medium to the field is

k2 = ω2
n2−

(
ω
ω0

)2

1−
(

ω
ω0

)2 . (154)

The dispersion of a wavepacket, with frequency content concentrated in an interval of
width ε aboutωB, is governed by Fourier integrals of the form

I (z, t) =
∫

ei (k(ω)z′−ωt ′) f

(
ω − ωB

ε

)
dω, (155)

where f is a localized function of frequency. Expansion ofk(ω) aboutω = ωB yields

I (z′, t ′) ∼ ei (kBz′−ωBt ′)
∫

ei (ω−ω0)(k′(ωB)z′−ωBt ′)ei
k′′(ωB)

2 (ω−ωB)2t ′ f

(
ω − ωB

ε

)
dω

∼ εei (kBz′−ωBt ′)
∫

ei µ(k′(ωB)(εz′)−ωB(εt ′))ei
k′′(ωB)

2 µ2(ε2z′) f (µ) dµ

= O((k′′(ωB)ε2z′)−
1
2 ), z′ = O(ε−2). (156)

Thus, a localized pulse disperses due to the finite time response of the medium over
a dimensionless distancez′ of orderε−2k′′(ωB)−1. Noting thatk′′(ωB) = O(ω−2

0 ), we
have

zD,material= O(ε−2k′′(ωB)−1) = O(ω2
0ε
−2) wavelengths.

Using the physical parameter values discussed in Appendix A, we find that

zD,material≈ 7 km.

Photonic Band Dispersion Length, zD,band

Linear dispersion due to the periodic structure (photonic band dispersion) is governed
by the linear coupled mode equations (27). The dispersion of the wave envelope is then
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expressed in terms of generalized Fourier superpositions of Floquet-Bloch waves:

I (z′, t ′) ∼
∫

E(z′, t ′, ; kB + εQ) f (Q) d Q

∼ ei (kBz′−ωBt ′) e−i Ä(0)εt ′
∫

ei Q(εz′−Ä′(0)εt ′) e−
i
2Ä′′(0)Q2εt ′ f (Q) d Q

= O((Ä′′(0)εt)−
1
2 ), t ′ = O(ε−1), (157)

whereÄ(Q) is given by the dispersion relation (29) which disperses to zero over a
distance

zD,band= O([εÄ′′(0)]−1) = O
(κ

ε

)
wavelengths.

Physically, this gives

zD,band≈ 1 cm,

which is six orders of magnitude shorter thanzD,material.

Nonlinear Length, zNL

A measure of the distancezNL, over which nonlinear effects play a role, can be obtained
by considering the coupled mode equations in the absence of dispersion. IfE0 denotes
the electric field amplitude, then we have

(∂T ± vg∂Z)E = −i 0|E|2E, (158)

with solutionE = e−i 0E2(Z−vgT)E = e−i 0E2(εz′−vgεt ′)E , for some constantE . Therefore,

zNL = (ε0)−1 ∼ (εφ)−1 wavelengths,

which gives

zNL ≈ 1 cm,

which balances the band dispersion lengthzD,band.

Balance of Nonlinearity and Dispersion
Note thatzD,material is longer thanzD,band by a factor of orderε−1; for frequencies near
the band edge, the dispersion due to the periodic structure is much stronger than material
dispersion.

Therefore, in order to achieve a balance between dispersive and nonlinear effects over
a short distance, we must equatezD,bandandzNL. This gives

κ

ε
∼ 1

φ
or κφ ∼ ε. (159)

By (139), this gives the intensity, ensuring a balance of appearance of nonlinear effects
within a (photonic band) dispersion length,zD,band,

I ∼ 3

8

(χ(1))3ε

nnI
2κ

,
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which works out to

I = O(1014) W/m2,

in line with the experiments described in [13].

C. Computational Details

C.1. Computations in Sections 3.4 and 3.5

All figures in these sections are initialized as a single normal mode of wavenumber
k = 1 of the linearized form of the AMLE, 6, withν = 0 and magnitude

√
ε. We

should note that the numerical simulations use very large values ofε compared to the
physically appropriate valueε = O(10−4) derived in Appendix A because performing
the simulations for AMLE with such smallε would be computationally infeasible. The
other parameters are given by

n2− 1= 1 and φ = 1.

For Figure 4, we use a frequency ofω0 = 1000 to illustrate the behavior near the limit
of instantaneous polarization before the onset of a shock. In Figures 5 and 6, we use
ω0 = 50 andω0 = 100, respectively, to show the role of dispersion in regularizing the
shock.

C.2. Computations in Section 7

All calculations in this section are performed with the following parameter values:

ε = 1

32
,

kB = 1,

n = 1.19,

φ = 1,

ν = 1.

In Figures 7, 9, and 12, a material frequency of

ω0 = 4

is used, while in Figure 13, we use the value

ω0 = 1.

In all calculations, the coefficients of the NLCME are derived from the above parameters,
and, as initial conditions, we construct a solution from the gap soliton with parameters

v = .9 and δ = .9.

To create the graphs in Figures 10 and 11, we also compute the evolutions with all
parameters as above except withε = 1

64.
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