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Abstract

We study models of Fei et. al. [1] and Forinash et. al. [2] of kinks
in the sine-Gordon equation, and solitons in the nonlinear Schrédinger
equation interacting with point defects. The models are two and three
degree-of-freedom Hamiltonian systems. Using dynamical systems meth-
ods, we show that they exhibit interesting behaviors including transverse
heteroclinic orbits to degenerate equilibria at infinity, chaotic dynamics,
and complex and delicate structures describing the interaction of travel-
ling waves with the defect. We interpret the behavior in terms of invariant
manifolds and phase space transport theory.

1 Introduction and motivation

In this paper we summarise current work on the interaction of traveling waves
with defects in media (local variations in material properties or geometry); de-
tailed accounts appear in [3, 4]. Motivated by a desire to understand light-
trapping by specially engineered defects in optical fiber waveguides [5], we study
two simpler problems: kink-impurity interations in the sine-Gordon equation,
and soliton-impurity interactions in the nonlinear Schrodinger equation. In
both cases we take ordinary differential equation (ODE) models formally de-
rived from the governing partial differential equations (PDE) by substitution
of a two-mode ansatz having fixed spatial forms and time-dependent amplitude
and phase coefficients. Employing the Lagrangian (variational) formulation,
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and taking variations only in the finite-dimensional subspace spanned by these
modes, Fei et. al. [1] and Forinash et. al. [2] derived ODEs, studied them numer-
ically and semi-analytically, and compared those results with direct simulations
of the PDEs. We carry out a more detailed study of the ODEs in their Hamil-
tonian formulations, and show that certain aspects of the interaction between
the travelling wave and standing ‘impurity’ mode can be understood in terms
of coupled mode interations interpreted geometrically in state space.

This paper is organized as follows. In Section 2 we review the two-mode
model of Fei, Kivshar, and Vazquez [1], develop a Hamiltonian formulation with
a coupling parameter, and describe a Melnikov-type analysis that establishes
transverse homoclinic orbits to certain periodic orbits ‘at infinity’ corresponding
to the non-interacting modes. This in turn permits the phase-space transport
analysis of Section 3 that illuminates the dynamics of transmission, reflection,
and (transient) trapping of kinks. Section 4 describes a modified three-mode
version of the model of Forinash et. al. [2]. Using a cyclic coordinate and the
corresponding conserved momentum, we again obtain a two degree-of-freedom
model. While this also exhibits transverse homoclinic orbits to infinity, we focus
on a different transmission-reflection mechanism, involving stable and unstable
manifolds of a set of periodic orbits on an invariant plane corresponding to the
standing impurity mode alone. We summarize in Section 5.

Since this paper ultimately concerns nonlinear physics, and employs dynam-
ical system models in the form of coupled oscillators, we believe that it is a
suitable tribute to Alexander Alexandrovich Andronov, whose pioneering work
in Gorki was so important to the development of dynamical systems, control
theory, and nonlinear science in general, eg. [6].

2 An ODE model for kink trapping

Consider the sine-Gordon equation with a localized impurity (point defect) of
strength € (not necessarily small) at the origin:

Ut — Ugy + sinu = ed(z) sinwu. (2.1)

In the absence of defects (¢ = 0) (2.1) supports a family of kink solutions
parameterized by speed V:

up(z,t) = 4tan™" exp ((a: —Vt—x9)/V1- V2). (2.2)

Fei et. al. [1] investigated (2.1) and noted three possible behaviors for kink solu-
tions initialised at large zo. Above a critical velocity V., the kink passes through
the defect, emerging with diminished speed, below V. the kink is captured, ex-
cept in certain ‘resonance bands’ where it ‘interacts a finite number of times
with the defect’ before returning in the direction from which it came. Figure 9
of [1] illustrates this behavior.

To derive the ODE model, Fei et. al. [1] substitute the ansatz:

U= up + uim = 4tan~" exp (z — X (t)) + a(t)e=c1*1/2 (2.3)



into the Lagrangian of (2.1) and evaluate the spatial integrals to obtain
(L, 1,
L= Ui ~ FUa [1 —ed(z)](1 —cosu) | de =

Leg = 4X% + %(a“’ - 0%a%) - U(X) — aF(X). (2.4)

The Euler-Lagrange equations for (2.4) yield the coupled oscillator system:
8X 4+ U'(X) + aF'(X) =0, (2.5a)
i+ a+ SF(X) =0, (2.5b)
where U and F are the ‘potentials’
U(X) = —2esech’(X) and F(X) = —2etanh(X)sech(X). (2.6)

Here X (t) denotes the kink location (X ~ o+ V't of (2.2)) and a(t) the ampli-
tude of the impurity mode. Numerical studies of (2.5) reveal behavior similar
to that noted by Fei et. al. for the PDE, with the difference that the trapping
bands below V. are replaced by bands in which the orbit is trapped for a finite
time before being transmitted past the defect. There is no evidence of trapping
for all time. See Figure 3.2 of [3].
We rewrite Equations (2.5) in Hamiltonian form with momentum variables
6Lef‘f y 6Lef‘f 2,
bx 8X 8X> Pa 8X €a7 (27)

and define action-angle coordinates for the impurity mode:

Ie QI |
a=1/ a cosf, Do = 2\/?s1n9, (2.8)

so that the Hamiltonian of the full system becomes

1 I
H(X,px,I,0) = 1—6p§(+U(X)+QI+,u\/ﬁ€cosﬁ F(X) défH0+,uH1.
(2.9)

Here we have also introduced an artificial coupling parameter p (in fact
@ = 1) for perturbative analysis. Indeed, when y = 0 Hamilton’s equations
decouple (cf. (2.5) with the F' term omitted) into a harmonic impurity mode a =
ap cos Q(t — tog) and the kink dynamics of Figure 2.1, containing the separatrix
I" formed by a pair of homoclinic orbits to infinity, given by

p% = £4v2esech X° ; X° = +sinh ™" \/g(t—tl). (2.10)
I divides the (X, px)-phase plane into three invariant regions: R; and Rs, filled

with orbits passing from Foo to +00, and Rs, containing trapped (periodic) or-
bits. For p # 0 the kink can interact with the impurity mode and cross between



Figure 2.1: The phase plane for the uncoupled X system

R; and R, or Ry and Rj3: the periodic perturbation due to the oscillatory mode
causes the separatrices to split. A kink will be said to be (transiently) trapped
or captured if it starts in R; or R3 and then enters and stays in R» for (finite)
future times.

We first appeal to a theorem of McGehee [7] to prove that the stable and un-
stable manifolds to the family of degenerate saddle type orbits (X = too,px =
0,1 =1°60 = Qt +6)) at infinity persist for u # 0. We then use reduction to
a constant energy manifold H° + pH! = h® [8, Section 4.8], thus eliminating
I and replacing time by the time-like phase variable # and recasting the prob-
lem as a periodically forced oscillator. As such, we may define a cross section
Yo = {(X,px,0 = 6p)} and the associated Poincaré map Py,. The Melnikov
method [9], cf [8, Theorem 4.8.4], is then used to compute a first order estimate
of the splitting distance:

e’} X 1 X 1
M(GO):/ <6H 0H OH* 0H > dt

o \ 08X dpx Opx 0X

[2I0 [°°
= —€ ?/ cos (Qt + 6y) sech? X (1 — 2sech? X)dt

2\ /4
= 2mV2I0€ <1 - Z) e~V <72 cosbp. (2.11)

ﬁ

Here the integral is evaluated along the unperturbed separatrix (2.10). Since
M (6p) has simple zeroes in the admissible range € € (0,2)) for each I° > 0, we
conclude that the stable and unstable manifolds of each periodic orbit I = I°
at X = +oo intersect transversally. Figure 2.2 shows a numerical computation
of part of the manifolds on the cross section ¥ = {(X,px,0 = 7/2)}.



Figure 2.2: The stable and unstable manifolds of the fixed points at X = oo for
the Poincaré map P/, with parameters p = 0.5, € = 0.5, I° = 0.5. Turnstile
lobe boundaries indicated by bold portions.

This perturbative analysis is for small u, but in [3] we show by direct esimates
on the ODEs (2.5) that homoclinic orbits persist to u = 1.

3 Phase space transport

The phase space transport theory of Rom-Kedar and Wiggins [10, 11] is appli-
cable to the map Py, derived above. Consider a kink starting in region R; to
the left of and above the (unperturbed) separatrix. If it is to enter Ry it must
lie below the stable manifold of X = 4+00: hence, inside one of the lobes to the
left of X = 0 and bounded below by the unstable manifold of X = —o0, eg.
L12(1) on Figure 2.2. (The lobe L; ;j(k) is the set of all points in region R;
which are mapped to region R; under k iterations of Py,: only a finite set of
lobes is shown, they march off to +00). Similarly, if an orbit is to escape R» to
Ry or Rs, it must do so via Lo 1(1) or Ly 3(1). These ‘one-step’ lobes L; ;(1)
are called turnstiles. Moreover, as Figure 2.2 shows, the iterative structure of
homoclinic intersections implies that each turnstile is crossed by preimages of
other lobes, so that orbits may be trapped for a finite number of iterates of
Py, before being ejected once more. In fact, the area-preservation of Py, and
arguments like those used in proof of the Poincaré Recurrence Theorem lead to:

Proposition 1. The set of points in Ry UR3 that is captured in Ry and trapped
for all future iterates, is of Lebesque measure zero.



Figure 3.1: A soluble trapping model.



The set of points trapped for all time has the local structure of the product
of a Cantor set and an arc, and the gaps of the Cantor set correspond to orbits
which are trapped for a finite number of iterates and then ejected. To illustrate
this, we consider an explicitly soluble example based on the standard Smale
horseshoe [12, 8]. Figure 3.1 shows a map F defined on the unit square S =
[0,1] %[0, 1], with three hyperbolic saddle points at (0,0), (0.5,0.5) and (1,1). F
is piecewise linear on the three horizontal strips H;, i = A, B, C, whose images
are the vertical strips V; = F(H;). The definition of F'is completed by specifying
its nonlinear action on the strips H4+ and that of F~' on V4: see the top of
Figure 3.1. The points (1,1) and (0,0) correspond to the degenerate equilibria
of Py, at +oo, and we focus on transport among regions R; (upper left), R
(lower right) and Ry = S (the unit square itself). The reader can check that the
turnstile lobes Ly 2(1) = By, L2 1(1) = H_, L3 (1) = B_ and Ly 3(1) = H;
are as shown.

A careful analysis [3] of the corresponding turnstiles and lobe-intersections
of F', along with its piecewise linearity on H;, allows us to compute the measure
A(k) of sets of points trapped in Ry for given numbers (k) of iterates. These
correspond to gaps in the iterative Cantor set construction apparant in Fig-
ure 3.1; the set trapped for all time is the (zero measure) stable manifold of the
horseshoe itself. We obtain

k—1
A(k) = 2a(1 — 2a)% ! = Au =3 <3> : (3.1)
Au \ Ay

where A, > 3 is the expansion factor (unstable eigenvalue) of DF|g,. Note
that >p2 | A(k) = 1: as we expect from Proposition 1, the Cantor set itself is
of measure zero. Moreover, plotting A(k) vs. k, we obtain the distribution of
residence times for trapped orbits as an exponentially decaying curve. We test
this prediction for the sine-Gordon model in Figure 3.2, which was obtained by
seeding L; 2(1) with 5,000 points, computing their orbits and recording their
residence times in Ry. Decay (with an exponent ~ —.038) is clear.

The topological transport picture sketched above helps explain the observa-
tion of reflection and trapping windows, noted in Section 2, as follows. Orbits
starting above the turnstile lobe Ly »(1) and its preimages are transmitted di-
rectly; those starting in a preimage of Ly »(1) are trapped, however, as for the
piecewise linear model F', trapping is transient, with exponentially decaying
probability of remaining within R» for time 7. Orbits in a preimage of Lo 1(1)
are eventually transmitted, and those in a preimage of L, 3(1) are eventually
reflected. Similar observations apply to orbits starting at +oco in R3.

Inclusion of radiation-induced dissipation in the ODEs, due to coupling of the
modes uy + Uy, with the continuum, supplements (2.5b) with a nonlinear damp-
ing term of the form —e3T'F (X )?a?a. The flow becomes volume-contracting and
the stable manifold of the trivial solution (X = 0,px = 0,1 = 0) invades the
turnstiles and lobes. The result is that the number of reflection and transmission
bands becomes finite and windows of data trapped for all time open for speeds
V < V.. See [3] Figure 6.1. As I' increases, transmission bands successively
vanish, and the qualitative behavior appears to approach that of the PDE.



/1
/
/

Frequency
/

0 20 40 60 80 100 120 140 160
Number of iterations inside

Figure 3.2: A histogram of residence times in R».

4 An ODE model for soliton trapping

We consider a nonlinear Schrodinger system with a localized impurity at the
origin:

1
iug + 5 Uza + |u*u + v6(z)u = 0. (4.1)

Much as in Section 2, but modifying the ansatz of [2], we substitute into (4.1)
u = nsech(nz — Z)e’V*=% 4+ asech (a|z| + tanh ™" z)e*id’*w : (4.2)
a

the sum of a ‘generalized’ soliton and a bound state based on the exact defect
mode with frequency-dependent amplitude. Following the same procedure, we
obtain a three degree-of-freedom system with Hamiltonian

3, .3
H=- (77 —?ta > + V2 — yn?sech® Z — 2yn\/a? — 42 sech Z costp,  (4.3)

in which the variables V| ¢, and v correspond to generalized positions and the
generalized momenta are given by

pv =—=2Z, py=2n+2(a—7), py =2(a—"). (4.4)

Note that, since the angle ¢ is absent from H, its conjugate momentum pg is
also conserved: (n+a — ) = ¢ — v = const: this corresponds to Lo-norm ||ul|-
conservation in (4.1). Thus the d) equation decouples and the system reduces to
two degrees of freedom.



It is convenient to write the resulting equations of motion in terms of the
variables (Z,V, a,v), with n = ¢ — a implicity defined:

Z=nV, (4.5a)
V = —yn?sech? Z tanh Z — yp\/a? — 42 sech Z tanh Z cos ¢, (4.5b)
a = —yn\/a? — y?sech Z sin, (4.5¢)

2o 2
w) sech Z cos. (4.5d)
22

2 a

b= 22 =42 = V) + ypsech’ Z + 4 (
Note that v can be scaled out of these equations, so w.l.o.g. we may set v =1
and consider the system (4.5) with parameter ¢ > v = 1. Note that at Z = oo
(or |Z| > 1) the initial data 79, ap and Vy determine the conserved quantities
H = hy and c. If n = ¢ — v all the energy is in the soliton, if n = 0 (a = ¢) it
is all in the impurity mode; in any case a is confined to the invariant domain
a € (vy,c).

While one can apply the same perturbation method to (4.5) as above, few
of the interesting phenomena occur in parameter ranges for which ¢ > 0 and
the reduction procedure goes through. Here, therefore, we consider a differ-
ent mechanism that determines the transmission/reflection fate of orbits in the
particular case 1 < ry. Further details and generalisations will appear in [4].

Figure 4.1 shows projections on the (Z, V') plane of two solutions started at
Zy = —20,a9 = v' with fixed 9 = ¢ — ag and differing velocities Vj: one is
transmitted, the other reflected. In fact there is a critical velocity V. depending
on np (or ¢ = np++y) such that all solitons initialised with Vi > V. are transmitted
and those with ¥y < V, are reflected with no (prolonged) interaction.

This behavior may be understood as follows. The ‘critical’ solutions near
Vo = V. spend a significant period near the invariant plane P = {Z =V = 0}.
On that plane the two-dimensional system (4.5¢-4.5d), with Z = V = 0, is
completely integrable and possesses a center at (a*,7) surrounded by a family
of periodic orbits Op,, parameterised by the value H = hy, limiting on saddle
separatrices. In the larger state space the fixed point (0,0,a*,7) is a saddle-
center, with real eigenvalues having eigenvectors lying outside P. Linearising
along any periodic orbit (a(t),(t)) enclosing (a*, ) gives a problem in Floquet
theory [13] that block-diagonalises into a piece in P (with Floquet multipliers 1
and 1) and a piece determining the stability outside P: the Hill’s equation

Z = (c—alt))V, (4.6a)
V = =7 ((c = a(t)? + (c - a(t)V/a(t) =77 cos (1)) Z. (4.6b)

For n < v we find (numerically) that the Floquet discriminant is greater than 2
in magnitude, and hence that all these periodic orbits are also hyperbolic trans-
verse to P. Each of these orbits therefore possesses two-dimensional stable and
unstable manifolds W#*(Op,), and the stable manifolds locally separate the

1To avoid the square root singularity, we set ag = v + ¢, € < 1.
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Figure 4.1: Projections of reflected and transmitted NLS solitons on the (Z,V)-
plane. Inset shows enlargement of orbits near the origin.

three-dimensional energy manifold H = hg into components containing orbits
that are transmitted and reflected. The union W*(P) = Uy, W*(Op,), a three-
dimensional manifold, generically intersects the ‘incoming’ three-dimensional
cross sections Xz, = {Z = Zy} in two-dimensional surfaces that separate trans-
mitted and reflected orbits, thereby implicitly defining the the set of critical
velocities V.. which are, in turn, further constrained for large |Zy| by conserva-

tion of H:
3
V::i:\/<c/37+h0 —ca). (4.7
c—a

Figure 4.2 shows projections of the solutions of Figure 4.1 onto P, compared
with orbits lying on that plane.

5 Conclusions

In this paper we have reviewed recent and ongoing work in which a two-mode
ansatz is used to formally reduce perturbed infinite dimensional evolution equa-
tions to finite-dimensional ODE models. Specifically, we consider trapping of
travelling kink and soliton solutions of the single space dimension sine-Gordon
and nonlinear Schrédinger equations with point (delta function) impurities lo-
cated at the origin. The ODEs recast the problems as modal interactions in two
degree-of-freedom Hamiltonian systems.

In the sine-Gordon problem, the key mechanism explaining transmission,
reflection, and transient trapping involves transverse intersections of homoclinic
orbits to a degenerate periodic orbit ‘at infinity,” in which the impurity mode
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Figure 4.2: Projections of reflected and transmitted NLS solitons compared with
the (a,)-flow on the invariant subspace P.

does not interact with the distant kink. Phase space transport methods then
permit one to interpret trapping in terms of a Smale horseshoe in a Poincaré
map for the reduced flow on a constant energy surface.

In the nonlinear Schréodinger equation, while similar homoclinic orbits and
transport phenomena occur for sufficiently large amplitude solitons, a different
mechanism governs the simple boundary separating transmission and reflection
for low amplitudes. This is the stable manifold of a set of periodic orbits ‘at the
origin,” in which the impurity mode oscillates uncoupled to the soliton which is
stalled over the defect.

We hope that these examples illustrate that the geometrical view of dynami-
cal systems, pioneered by Poincaré and extensively developed by A.A. Andronov
and the Gorki school, can illuminate areas considerably beyond their direct ap-
plication to ODEs.
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