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We consider the model of catalysis due to Ziff, Gulari, and Barshad [Phys. Rev. Lett. 56, 2553
(1986)] as a pattern formation problem. We find that the model supports trigger waves, and we
examine the dependence of the wave velocity on diffusion. In addition to the usual interface width,
there is a statistical broadening of the wave front that increases in time as t'/3.
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I. INTRODUCTION

Chemical reactions driven out of equilibrium display
a wealth of phenomena, including pattern formation of
many types. Some aspects of chemical patterns can be
understood from reaction-diffusion equations built from
the usual rate equations, with the addition of a diffusion
term [1]. This approach has had great success in predict-
ing and understanding many features. However, for some
effects deterministic, coarse-grained equations are not an
adequate approximation. This paper introduces Monte
Carlo techniques in this context in order to model the
effect of Auctuations and correlations on the patterns.

One of the best studied and simplest Monte Carlo mod-
els in nonequilibrium chemistry is the monomer-dimer
model for catalysis of Ziff, Gulari, and Barshad (ZGB)
[2]. It was introduced to study the oxidation of carbon
monoxide on a platinum substrate. In this Monte Carlo
model a lattice of sites can either be unoccupied, occu-
pied by A (which could represent CO), or occupied by B
(O). At each Monte Carlo step, a site is chosen randomly.
If it is empty, an attempt is made to adsorb either A4 or
B;. B; adsorption requires two adjacent empty sites,
each of which captures one B atom, while A requires but
one empty site. If an A lands next to B or vice versa,
they both react, and both sites empty. The control pa-
rameter, ¥, is the probability that an adsorbing particle
will be A or Bs. y is related to the partial pressures of
gas phase A and B;. . -

ZGB and others [3] found large dev1at10ns from mean-

field rate equations. In simulations the model has two
phase transitions: a continuous transition between a B
poisoned phase and a reactive phase at y = 0.389, and
a first-order transition between a reactive phase and a A
poisoned phase at y = 0.525. (Poisoned means totally
covered so that no more adsorption is possible.) In the

vicinity of the first-order transition there are metastable
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: siz;';,fes, and the system shows hysteresis. [2] The reactive
" "phase has a moderate concentration of B, and very little

‘A. Although the simplest rate equation is unsuccessful
for ZGB, more complex mean-field theories that include
some correlations have been given [4,5].

Experiments [6-8] have shown that the real catalysis of .
CO and O3 on platinum has steady states similar to the
A poisoned and reactive phases of the ZGB model. There
is an important difference between the experiments and
ZGB: real systems do not show O poisoning or anything
comparable to the second-order transition. For this pa-
per, we will concentrate on the parameter range near the

_first-order transition to A poisoning, which does occur

in experiment: An abrupt transition to CO poisoning is
clearly seen, for example, in Ref. [8]. Of course, in a real
experiment, complete poisoning does not happen. There
is a finite probability of, for example, thermal desorption
of CO. This can be accommodated in the model: It is
known that a small desorption probability of A has no
qualitative effect on the first-order transition [3]. All the
results of this paper are insensitive to desorption of A.
For small y, the effect of desorption is large.
Experiments on the dynamics of the reaction showed
patterned structures, including trigger waves, target pat-
terns, and spiral waves. There has been considerable
work on these structures using reaction-diffusion equa-
tions [5,6]. In this paper, we will study chemical waves
of this type, directly in terms of the ZGB model. Our
motivation is that reaction-diffusion equations and other

- -——--—--——-mean-field treatments lack noise and spatial correlations
_which ZGB has, and which could affect chemical waves.

Spatial correlations in the ZGB model have been shown
to affect its behavior. For example, the reaction rate
in the model is not given by the mean-field expression
Q ~ papp [9]. This is because correlations produce
patches [10] of A and B and the reaction can only take
place at the boundary of the patches. Real systems in
two dimensions should show this effect as well. There is
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clearly also noise in ZGB, namely, shot noise in the fux
of added particles and internal noise from the stochastic
nature of the reaction. This is the focus of the present
work. C-

There have been other studies of chemical waves using
Monte Carlo simulations some time ago [11]. Another
approach, that of lattice-gas cellular automata [12] does
include some of the effects that we consider, and it has
been applied to spiral waves. Since a preliminary account
of this work appeared [13] a very similar approach to
trigger waves was given by Evans and Ray (ER) [14].
There are some differences in our approaches, which will
be pointed out below. -

In the next section, we study the ZGB model in the
bistable regime and demonstrate trigger wave propaga-
tion. We investigate the velocity of the front and show
how it depends on y and the diffusion rate of adsorbed
A. (We assume negligible B diffusion because in exper-
imental systems, O is much more tightly bound to the
surface than CO [6]. Note that in ER the diffusion was
taken to be the same for A and B.) We find evidence
of an effective diffusion constant, even in the absence of
an explicit diffusion. The width of the front is shown to
increase in time in contrast with the reaction-diffusion
result. This effect of noise can be understood quantita-
tively using the theory of interface kinetics [17]. We show

by explicit simulation that the ZGB model does fall in the

same universality class as other interface problems, and
we comment on when this behavior might be expected to
fail.

This calculation is for a highly idealized model system,
and the relationship of this work with real catalysis (if
any) is not clear. It would be extremely interesting if we
could find a system in which these statistical effects are
important and could be observed. For the moment we
have only very tentative suggestions to give about the
possibility of such observations, which are given in the
last section of the paper.

II. TRIGGER WAVES: VELOCITY

A bistable medium is an extended dissipative system
with a stable state and a metastable state. At a flat
boundary between the two, the metastable state will
lose ground before the stable one, and the boundary will
move. This is a trigger wave.

We do ZGB simulations with A diffusion [3]: we make
D attempts to move a randomly chosen site between each
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adsorption attempt. A diffusion attempt is successful if
the site chosen has an A and an adjacent empty site in a
randomly chosen direction. We create a front by putting
a barrier in the system and preparing two different states:
one side starts poisoned with A and the other with a finite
coverage of B. Adsorption with the same values of y
causes the two halves to develop into separate metastable
states, one of high A occupancy and low reaction rate, the
other of low A occupancy and high reaction rate. Then
we remove the barrier and a wave front propagates. A
typical front is shown in Fig. 1.

We measure the velocity of the front by tracking the =
position of the front center, defined as the locus of 50%
A coverage. The width is defined as the distance be-
tween the x positions of 10% and 90% A occupancy. The
dependence of velocity on y and on D is shown in Fig.
2(a). The time unit in this graph is the conventional one
in Monte Carlo simulations, namely, At = 1 corresponds
to one adsorption attempt per site of the lattice; this
defines our unit of time, 7, as a characteristic time for
the process. The y at which the front is stationary, y.,
increases with increasing D as has been found in earlier
studies [15].

We fit our data with:

v = a\/D—e[y_yc(D) +O((y_yc)2)]’ (1)

in which D, is an effective diffusion constant. We use
this form because reaction-diffusion equations show that
velocity should vary as the square root of the diffusion
constant [1], vo = 4/D/7. As pointed out by, for exam-
ple, Clement et al. [10], in driven reactive systems, there
is a reaction driven effective diffusion in addition to any
explicit diffusion. We therefore expect D, = D + Dy,
where D is the number of diffusion steps and Dy is of
order unity in units of a2/, where a is the lattice con-
stant. The dependence on y is a power series expansion
around y.. We find D, by noting that the slope of the
line Av(y)/Ay is ay/De. A plot of [Av(y)/Ay]* vs D
is shown in Fig. 2(b). We fit D, as D. = D + D,
where Dy is a reaction driven diffusion constant of about
3. This value is seen in Fig. 2(b) from an extrapolation
to (unphysical) negative values of D.

Note that all of the curves for different D seem to meet
at y, &~ 0.576. At this value, v is independent of D and
is presumably the mean-field value. Our “mean-field”

behavior is different from that of ER because the asym-
metric diffusion that we adopt complicates the interpre-
tation.

FIG. 1. Trigger wave front. Empty cells are white, B is gray, and A is black. The A poisoned phase on the bottom and the
reactive phase on the top are separated by the front. Individual lattice sites can be seen in this relatively small simulation,
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This unexpected feature implies a simple behavior for

ye(D), namely, that y.(D) = y,— K/+/D + Dy, where K

is a constant. We have been unable to find a derivation
for this peculiarity of the ZGB model.

ITl. TRIGGER WAVES: INTERFACE WIDTH

In a deterministic system described by reaction-
diffusion equations, the interface between the stable and
metastable regions should be of fixed width [1], wo =
/D7. This width corresponds to the mixed region near
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the front, which is visible in Fig. 1. Our system has an
extra source of broadening, statistical fluctuations, which
leads to wandering of the front [16], which is also visible
in Fig. 1. We describe the extra width, w, by appeal-
ing to the theory of kinetic roughening: If a front z(y, t)
moves in the presence of noise, the usual equation of mo-
tion is the KPZ equation [17]

g—f =n(y,t) +v+vViz + %/\(Vw)z, (2)

where 7 is white noise with zero mean such that
(n(=z,t)n(y, 8)) = od(z — y)d(t — 8) and v is the front
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FIG. 2. (a) Average velocity v [units (lattice constants)/7, where 7 is defined in the text] vs y for various D. Simulation on
a 50 x 100 lattice averaged over 25 runs. (b) [Aw(y)/Ay]? vs D. The intercept with the horizontal axis is —D..



velocity discussed above.

The KPZ equation was originally used for surface
growth problems, but it is very general and should apply
here. It is the simplest local equation consistent with the
symmetries of the problem, namely, that there be reflec-
tion symmetry in the plane of the surface, and translation
symmetry in . Noise arises from inhomogenieties in the

reactants induced by shot noise. Higher order terms can

be neglected for sufficiently large coarse-grained surfaces.
It has been known for some time that the behavior of

the width is summarized in a scaling formula [18] involv-

ing critical exponents a, 3, z: '

2 CytP,
w:tﬁf(t/L)z{ w, diel

CrL*,

where o = Bz, and L is the size of the system in the y
direction. The saturation of the width is a size effect:
the fluctuations stop increasing the width when they are
correlated over the whole interface. In 1 + 1 dimensions,
one expects [18] B8 = 1/3,a = 1/2, so that w ~ t1/3
unless A = 0; then, the width increases as t'/4 (Edwards-
Wilkinson growth [19]). Furthermore, in this case [20]
the amplitudes, C;, Cr, are known:

2 [ o/V2my, ifA=0; (45
¢ 0.4(C3X)%/3, if A #£0,
C% = Cy/12, o (5)

where Cy = o /2v is a characteristic parameter that is
invariant under coarse graining [18,21].

We can show that A = v from a simple geometrical
argument [17]. This is because in this problem there
is no preferred direction in space: a front can only
grow normal to its local direction, say, by vdt. Now
suppose the normal is tilted by #, with respect to the
s direction as defined by the overall channel. Then
dz = [vdt]/ cos(8) = [vét][1 + 02/2] ~ [vdt][L + (Vz)?/2).
Thus, a stalled front, v = A == 0, should exhibit Edwards-
Wilkinson roughening but a moving one should exhibit
KPZ roughening. This general argument should hold for

any model without special symmetries, and assumes only

that the correlations do not extend over the whole length
of the channel. (This point was also made by ER.)

In Fig. 3 we plot the interface width as a function
of time for interfaces of different size, L, for a rapidly
moving front, y = 0.45,v = 0.3. The expected behavior,
including finite-size saturation, is found. The growth of
w with ¢ is inconsistent with the predictions of reaction-
diffusion equations, but it does have the power law scal-
ing of KPZ behavior. The plot gives a best fit with a
B = 0.30. _

We can go further and estimate all the parameters in
the KPZ equation from our data. Using the saturated
values for w in Fig. 3 we find Cp; =~ 10.8. Also, the
prefactor of t? is approximately 2.1. Comparing these
numbers with Eq.(5) we find A =~ 0.3 in excellent agree-
ment with the directly measured velocity. If we guess
that v ~ D, we have numerical values for all the pa-

rameters. Unlike Cy and A, v does change under coarse
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FIG. 3. Front width, w, vs time on lattices of various sizes,

L, both in units of the lattice constant. The finite size satu-
ration is evident for L, = 200.

graining [21].

Kang and Weinberg studied a different model than
ours (the A+ B — 0 reaction). In this case, if there is in-
terparticle repulsion they found w ~ t*/4 and concluded
that A = 0 [22]. It is not clear to us why this should
be so for their model, or whether it exhibits bistability
of the same type as ZGB. It may be that the velocity of
their interface was simply too small to see the effect of
the nonlinear terms.

In fact, we expect the crossover to KPZ behavior
to take place when wy—o ~ wgpz, i.e., when t, =
63v°/a%A*, which can be very large when A is small.
However, for our parameters this time is of order 500,
again in agreement with the plot of Fig. 3.

There is, however, an assumption in this discussion
which is not obviously valid, namely, that the fluctuations
are confined to the interface. In our particular case we
have ensured that this be so by our choice of conditions:
there are no fluctuations in the bulk of the poisoned A
phase, so that surface fluctuations are well defined. How-
ever, if we were to allow our interface to progress in the
opposite direction by tuning y above the stall point, or
if we were to allow A desorption, we should expect an
interference between surface and bulk fluctuations: the
surface could advance by jumps to engulf islands in the
metastable phase. We might expect a crossover to some-
thing like invasion percolation. We intend to pursue this
subject further in future publications.

IV. SUMMARY AND DISCUSSION

In this Work we have attempted to join two strands of
work on catalytic process, namely, statistical modeling
and deterministic modeling by reaction-diffusion equa-
tions. We have shown that there are trigger waves in the
ZGB model. We have shown that statistical processes
should affect the interface width of trigger wave fronts.

We see no a priori reason why statistical wandering

could not be observed in some conditions, though in the
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usual regime of length and time scales of ultrahigh vac-
uum (UHV) experiments [6,7], such effects are clearly
negligible. For large D the intrinsic width we will be
larger than w, except for a crossover at very long times
or large scales. -

We can estimate the crossover as follows: we ask when
the wg ~ . 1 v
length scale: w ~ 4/CpL. This implies that L > D?*r/o.
We can estimate o by noting that for the shot-noise in-
duced processes that interest us, o ~ a®/7, where a is an
atomic dimension. (For our lattice model o ~ 60.) Re-
placing D by a2/, where 74, is a hopping time, we find
that we need L/a > (7/74)2. Since the rate-limiting pro-
cess in the UHV experiments is adsorption which takes
place at times of order 1 monolayer/sec, and 7, ~ 108
sec for typical diffusion constants, this observation is
vastly out of the question.

However, it is not necessary to do the experiment in
UHV. Recently, for example [24], waves of the sort that
interest us were observed at atmospheric pressures with
characteristic times which are probably six to eight or-
ders of magnitude smaller than in the UHV experiments.
It would be extremely interesting to see whether noise-
induced roughening of chemical interfaces could be ob-
served in these conditions. However, very considerable
further work will be required needed to clarify this point,
and for the moment our suggestion should be viewed
as speculative. In particular, the role of inhomogene-
ity of the substrate and gas phase couplings should be
investigated, and a more careful estimate of the relevant
crossover length scale is needed.

In real catalytic systems, more comphcated waves such
as spiral patterns have been seen [6]. These arise when
a slow reaction such as reconstruction of the substrate is
coupled to the chemical reaction. We have preliminary
results [23] (see Fig. 4) showing that this can be repre-
sented in a Monte Carlo simulation of the type used here
by introducing a slow variable at each site which has two
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D is of the order of the wandering on some

FIG. 4. Spiral wave generated by adding a slowly relaxing
variable at each surface site. Empty cells are white, B is gray,
and A is black.

values, @ and 8. An o phase site not occupied by A has
a small probability per Monte Carlo step of changing to
B and a (3 site occupied by A slowly changes to . In
addition, we disallow B adsorption on the 3 sites, and
allow a finite probability of desorption of A. This is a
crude representation of what happens when a platinium
surface reconstructs [6]. A simulation of this type could
cast light on the noise-induced nucleation of spiral pat-
terns, though, again, the conditions necessary to see our
effects are very different from those of these experiments.
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